Researching Information Systems and Computing
Contents

List of Figures and Tables xi
List of Abbreviations xiii
Preface xiv
 How to Use This Book xv

1. Introduction 1
 Aims of this book 1
 The IS and computing disciplines 1
 Evidence-based practice 2
 The Internet and research 4
 What is research? 4
 Let’s have an argument! 7
 Evaluating research 8
 ‘I just want to develop a computer-based system’ 9
 Rigour and relevance in research 10
 The 6Ps of research 11
 Structure of this book 13
 Practical work 14
 Further reading 14
 References 14

2. The Purpose and Products of Research 16
 Reasons for doing research 16
 Possible products – the outcomes of research 21
 Finding and choosing research topics 25
 ‘I write therefore I think’ 28
 Evaluating the purpose and products of research 29
 Practical work 30
 Further reading 30
 References 31

3. Overview of the Research Process 32
 Model of the research process 33
 Alternative models of the research process 39
4. Internet Research

Background to the Internet and World Wide Web
Internet research topics
The Internet and a literature review
The Internet and research strategies and methods
Internet research, the law and ethics
Practical work
Further reading
References

5. Participants and Research Ethics

The law and research
Rights of people directly involved
Responsibilities of an ethical researcher
Design and creation projects and ethics
Internet research and ethics
‘It’s not that simple!’
Evaluating research ethics
Practical work
Further reading
References

6. Reviewing the Literature

Purpose of a literature review
Literature resources
The Internet and literature reviews
Conducting a literature review
Evaluating literature reviews
Practical work
Further reading
References

7. Surveys

Defining surveys
Planning and designing surveys
Grounded theory and surveys
The Internet and surveys
Examples of surveys in IS and computing research 103
Evaluating survey-based research 104
Practical work 106
Further reading 106
References 107

8. Design and Creation 108
Defining design and creation 108
Planning and conducting design and creation research 111
Creative computing and digital art 118
The Internet and design and creation research 119
Examples of design and creation research in IS and computing 120
Evaluating design and creation research 121
Practical work 123
Further reading 123
References 124

9. Experiments 126
Defining experiments 126
Planning and conducting experiments 128
The Internet and experiments 135
Examples of experiments in IS and computing research 136
Evaluating experiment-based research 137
Practical work 139
Further reading 139
References 140

10. Case Studies 141
Defining case studies 141
Planning and conducting case studies 143
The Internet and case studies 148
Examples of case studies in IS and computing research 149
Evaluating case study-based research 150
Practical work 151
Further reading 152
References 152

11. Action Research 154
Defining action research 154
Planning and conducting action research 156
Distinguishing action research from consultancy 158
Developments in action research 161
The Internet and action research 166
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>Ethnography</td>
<td>173-184</td>
</tr>
<tr>
<td></td>
<td>Explanation</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Planning and conducting an ethnography</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>The Internet and ethnography</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Examples of ethnography in IS and computing research</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Evaluating ethnography-based research</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Practical work</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>184</td>
</tr>
<tr>
<td>13.</td>
<td>Interviews</td>
<td>186-201</td>
</tr>
<tr>
<td></td>
<td>Defining interviews</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Planning and conducting interviews</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Group interviews</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Internet-based interviews</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>Examples of interviews in IS and computing research</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Evaluating interview-based research</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>Practical work</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>201</td>
</tr>
<tr>
<td>14.</td>
<td>Observations</td>
<td>202-217</td>
</tr>
<tr>
<td></td>
<td>Defining observations</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Planning and conducting systematic observation</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Planning and conducting participant observation</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>The Internet and observation</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Examples of observations in IS and computing research</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Evaluating observation-based research</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Practical work</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>217</td>
</tr>
<tr>
<td>15.</td>
<td>Questionnaires</td>
<td>219-228</td>
</tr>
<tr>
<td></td>
<td>Defining questionnaires</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Planning and designing questionnaires</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>The Internet and questionnaires</td>
<td>228</td>
</tr>
</tbody>
</table>
Criticisms of positivism 288
Evaluating positivist research 289
Practical work 290
Further reading 290
References 290

20. Alternative Philosophical Paradigms 291
 Introduction 291
 Interpretivism 292
 Critical research 296
 Linking research strategies to philosophical paradigms 299
 Which paradigm to choose? 303
 Evaluating interpretive and critical research 305
 Practical work 305
 Further reading 305
 References 306

21. Presentation of the Research 309
 Writing up the research 309
 Conference paper presentations 314
 Posters and exhibitions 318
 Software demonstrations 319
 Presenting yourself 319
 PhD vivas 320
 Evaluating presentations 322
 Practical work 323
 Further reading 323
 References 323

Final Words 325

Index 326
List of Figures and Tables

Figure 1.1 A piece of research – dealing with a puncture 5
Figure 1.2 Everyday thinking versus good research 6
Figure 1.3 A thesis is an argument 8
Figure 1.4 The 6Ps of research 12

Figure 3.1 Model of the research process 33

Figure 6.1 Splitting a research topic into separate concepts 81
Figure 6.2 Alternative terms for research concepts 81
Figure 6.3 Using symbols and Boolean operators in a search 82
Figure 6.4 Using a matrix to map papers to concepts 88

Figure 8.1 Research methodology and development methodology 113

Figure 14.1 Different kinds of observation 203
Figure 14.2 Observation schedule for monitoring computer labs 205
Figure 14.3 Schedule for observing group meetings 207

Figure 17.1 Number of people allocated to systems development projects 250
Figure 17.2 Frequency of project team size 250
Figure 17.3 Allocation to project teams 251
Figure 17.4 Days lost through sickness 251
Figure 17.5 Percentage of people agreeing that a web presence is essential 252
Figure 17.6 Relationship between salary and Internet access 253
Figure 17.7 Annual turnover, 1995–2004 inclusive 253
Figure 17.8 Table of students’ test scores 260
Figure 17.9 Table of expected results 260
Figure 17.10 Extract of a table of critical values for the chi-square test 261
List of Figures and Tables

Figure 18.1 Theme analysis
Figure 18.2 Using a table to analyse data – use of metaphors over time
Figure 18.3 Satisfaction with a computer system
Figure 18.4 Mike’s taxonomy of end-users

Table 4.1 Research strategies and the Internet
Table 4.2 Data generation methods and the Internet
Table 6.1 Information gateways relevant to IS and computing
Table 7.1 Sampling techniques
Table 7.2 Target population sizes and sample sizes
Table 20.1 Quality in positivist and interpretivist research
List of Abbreviations

ACM Association of Computing Machinery
AIS Association for Information Systems
BCS British Computer Society
CASE Computer-Aided Software Engineering
CERN European Organisation for Nuclear Research
IEEE Institute of Electrical and Electronic Engineers
IS The information systems discipline
IT Information Technology
LAN Local Area Network
SD Standard Deviation
SDLC Systems Development Life-Cycle
SSM Soft Systems Methodology
UML Unified Modelling Language
XP Extreme Programming
Preface

This book is an introductory text on research methods for those in the information systems (usually shortened to IS) and computing disciplines. It is suitable for individual study by novice researchers, particularly those embarking upon masters or PhD research. It can also be used by a tutor as a course text for a taught course in research methods for IS and computing at either masters or senior undergraduate level. It can also be helpful to more experienced researchers who want to learn about particular research approaches with which they are not currently familiar.

IS researchers study how information systems are developed and used by individuals, groups, organizations, and society. Often those information systems involve the use of computers. IS researchers study the interaction between the social sphere of people and their organizations and the technical sphere of systems based upon information and communication technologies. They study the processes by which systems are analysed and designed, the contributions they make to business effectiveness, the reasons for the failure of some computer systems and the impact information technology has on our modern world.

Computing researchers are also concerned with the development and use of systems based upon information and communication technologies. They include computer scientists who focus on the mathematical underpinnings of computer-based products, software engineers who research into the process of developing high-quality, reliable systems, web developers who specialize in Internet applications, and animators and artists who develop games, virtual reality environments and digital multimedia applications. Unlike IS researchers, computing researchers have tended to concentrate more on the technical sphere than the social. However, there are increasingly calls for computing researchers to pay greater attention to the viability of their computer-based products and processes in the real world away from the lab, to ensure that their theories and systems are properly validated. Some computing researchers are therefore paying greater attention to the social sphere and its interaction with the technological sphere – like IS researchers.

Since both IS and computing researchers are interested in the development and use of systems based upon information and communication technologies, albeit often from different perspectives, it is appropriate to address them both in this one book. However, the two communities of IS and computing have developed separately, with discrete bodies of literature and differing preferred research approaches. This book
therefore makes clear where the two communities differ in approach, includes examples of research from both disciplines and cites work from the literature of both.

It addresses:

- the kinds of research questions addressed in IS and computing;
- the research approaches used in IS and computing;
- examples of previous research from the IS and computing literature;
- the analysis and evaluation of research projects in IS and computing.

The book discusses the nature of research and the research process, and explains how to do a literature review, the starting point for most research projects. It then covers the main research strategies used in IS and computing (surveys, design and creation, experiments, case studies, action research and ethnography) and the main data generation methods (interviews, questionnaires, observation and documents). It addresses both quantitative and qualitative data analysis. It also explains the different underlying philosophical paradigms of research (the scientific method and positivism, interpretivism and critical research) and relates them to the different research strategies. Some guidance is also given on how to present the results of research, whether via an article or thesis, conference paper or software demonstration. Of course, the book also discusses the ethics of research and the need to ensure that the actions of researchers do not cause harm to others (physiological, psychological, social, political or economic).

Since the Internet and World Wide Web are such important technology-based information systems in our modern world, attention is also paid throughout the book to possible research topics about the Internet and World Wide Web, and to how they can be used within research approaches in IS and computing. Some web addresses are given of useful resources for IS and computing researchers. These were all correct at the time of writing this book but, of course, sites move and change their address or disappear entirely. If a web address no longer seems to be valid, try entering relevant keywords into a search engine – often this will enable you to track down the new address.

How to Use This Book

Here are some suggestions on how to use this book, whether you are an individual novice researcher, a lecturer or instructor using it as a course text, or an experienced researcher.

Individual novice researchers

If you are a novice researcher, probably a newly enrolled masters or PhD student, I recommend that you read all the chapters in this book. Then you will have a good
overview of the range of approaches used in IS and computing, and will be able to
choose the one(s) most appropriate to your needs and interests. Each chapter includes
some practical exercises to help you test your understanding of the concepts explained
in that chapter. If possible, discuss your answers to the questions with a fellow student
or work colleague – by comparing your answers and exploring any differences you will
increase further your understanding of the topics. Use the evaluation guides provided
in almost every chapter to help you analyse and evaluate the research of others, partic-
ularly the work you read as you study the previous literature in your discipline. Once
you have decided your research topic’s appropriate strategy, data generation method(s)
and underlying philosophical paradigm, you can obtain more detailed information
about them by following up each chapter’s suggestions for further reading.

Instructors and lecturers

If you are teaching a course in research methods for IS and computing, this book can
be an appropriate course text. I have used the material to teach both undergraduates
and postgraduates. The chapters average 5000–6000 words and are written in a student-
friendly style. Students can therefore be asked to read one or two each week. Some of
the practical work suggested in each chapter can be carried out by the students in
class. Alternatively they can do the work in their own time and give seminar presen-
tations on their findings. They can also give seminar presentations that discuss the
further reading suggestions provided at the end of each chapter. The practical work
usually includes an exercise asking students to analyse and evaluate a piece of research
based on a particular strategy or data generation method. The intention is to encour-
ge students to read critically, and to recognize where insufficient information about
the research process means that we must treat the reported research findings with
some caution. There is a variety of ways to tackle this exercise:

• Since each chapter cites published examples of a particular strategy or method
 being used in IS and computing research, the students can analyse and evaluate one
 of them. (This requires particular care for undergraduate students. Many IS papers
 include a lot of social theory with which students may not be familiar and many
 computing articles include sophisticated mathematical work that some students
 may find off-putting.)

• The lecturer can require that some other research paper be studied and evaluated –
 one whose content is known to be relevant and at an appropriate level for the class
 members.

• The students can be asked to do a literature search to find and evaluate another
 example of published work based on that strategy or method.

• One group of students can be asked to carry out a small piece of research based on
 a particular strategy or method, and present their research process and findings to
 the class. The other class members then analyse and evaluate their colleagues’ work.
Experienced researchers

If you are reading this book as an experienced researcher, you can dip into those chapters that explain any research approaches with which you are unfamiliar. I also recommend that you read the first three chapters, to gain an appreciation of the book’s structure and style, and its definition of what is meant by ‘research’.

Acknowledgments

I wish to thank students and colleagues in the School of Computing, University of Teesside, Middlesbrough, UK. They have used and commented upon much of the material in this book, and helped me refine it. I also want to thank Linda Hockley, of the Centre for Internet Computing, University of Hull, and Frances Bell and her colleagues at the Information Systems, Organisation and Society Research Centre, University of Salford, for suggestions, advice and lively discussions about the nature of research in IS and computing. Finally I must, as always, thank Spider for his constant support and good humour.