1

Introduction

This book aims to provide a simple and practical introduction to grounded theory. I’ve used grounded theory myself in research for many years and feel there is real need for a book that provides examples and gives as much guidance as possible. This is not to say that this is a prescriptive text – there is no one way to do grounded theory – but the book does aim to be as clear as possible. The idea is to give you the basic techniques to be able to do your own grounded theory study and enough information to then proceed with your own adaptations and exploration in grounded theory. This book:

- explains the grounded theory analysis process through clearly worked examples
- explains how the grounded theory process can lead to new theory and new insights about data
- explains how to engage the findings from a grounded theory study with existing literature
- provides exercises, Web resources, further reading and frequently asked questions in each chapter.

This book largely came about through requests from my postgraduate students about the ‘how’ of grounded theory method (GTM), due to their perception of a lack of practical guidance and examples in the grounded theory literature. This set me thinking about the best way to explain the ‘how’ without being prescriptive about the method. Although they were convinced by my passionate advocacy of it as a method of analysing qualitative data and the grounded theory studies they had read, they still faced a real problem with understanding and applying the method. So, this book aims to fill that gap – to explain the ‘how’, without sacrificing the flexibility of the method in the process. It aims, above all else, to be an accessible guide to grounded theory method for first-time users, so I make no apologies for the straightforward tone of this book. While precise terms are sometimes needed to explain complex concepts, I believe it’s also important to not hide behind terms that complicate rather than illuminate!
This book is also a highly personal view of grounded theory – it is very much the product of my own experiences and those of my wonderful students. The book aims to be the sum total of the advice I might give a first-time user of grounded theory and distil the experiences of over 15 years of using grounded theory in many contexts.

It has become apparent to me how much knowledge about the actual practice of coding remains opaque, and is not available in either research texts or journal papers. There are probably some good reasons for this. First, it is difficult to explain how the coding process is carried out – the best type of learning in this case is to try it out. So, in this book there are lots of examples and exercises. When I teach grounded theory, I try to get people to apply the method to an example as soon as possible – there is no substitute for simply doing it! Second, journal articles do not afford researchers the space required to explain how they have analysed their data in detail. The process of analysis is often messy and iterative, and this sort of truth-telling does not fit well with the notion of a finished piece of research. So often, researchers do not discuss their processes of analysis for fear of being criticised for not following the right path. What happens in research is real and often untidy and any analysis procedure is prone to be affected by the context, how the data was collected, the circumstances of the field, who was carrying out the analysis and many other factors.

So, this book aims to show the reflexive nature of the coding process and encourage you to embark on it yourself as soon as possible. You’ll hear a lot about the ‘coding process’ in this book. Put simply, this is the process of attaching concepts to data, for the purposes of analysing that data.

My experience with the method in the field of information systems has led me to believe that many researchers use grounded theory as a practical coding method, concentrating on the mechanics of coding, rather than as the theorising device it was designed to be. This is a pity because, in doing so, researchers are using the first part of the method only and neglecting the unique power of grounded theory. This is rather like an artist deciding to paint pictures, but never framing them, exhibiting them or describing what they are doing in the context of current art practice. So, throughout the book, the issue of what a theory is, as well as how it might be built and then engaged with other theories, is discussed. You can read this book to find out about coding procedures in grounded theory and not propose to build any theory yourself, but the examples in this book do show how to do so.

In the book, you’ll see the term ‘grounded theory method’ (or its acronym, ‘GTM’) used rather than the more commonly seen ‘grounded theory’. Antony Bryant (2002) uses this term to make the useful point that grounded theory is a method that produces a grounded theory, and this is a helpful distinction to make.
INTRODUCTION

What this book does not do

This book does not claim to be a definitive text on the grounded theory method (GTM), nor stake out particular territory. The method has a history that started in 1967 and there are many views on and variants of it. It is an evolving method, too, as researchers increasingly turn to it as a powerful tool in qualitative work. The book does aim to share some useful rules of thumb about applying GTM, however, and gives a personal view. It does not claim to be applying ‘pure’ grounded theory as there are many debates about what ‘pure’ grounded theory might be – it is almost inevitable that I will offend someone with my own view of grounded theory.

This book does not spend a lot of time on the philosophical position of GTM, interesting and important though that issue is. Students often ask me if GTM is ‘valid’. What they mean by this is whether or not GTM is seen as a scientific method within the positivist paradigm. These issues are further discussed in Chapter 2, but, for now, suffice it to say that GTM can be used within positivist, interpretivist and critical paradigms of research.

Is GTM difficult to use?

When research students say they wish to use GTM, often they are told that it is difficult to use. This book is written to support those students, and defend their use of GTM. It was a revolutionary method of analysing qualitative data when it was launched in 1967, and it still retains its controversial qualities to this day.

Why should it be controversial and why do scholars still debate, and sometimes criticise, GTM? One reason is found in the chequered history of the method itself. From the time the seminal book, The Discovery of Grounded Theory, was published (Glaser and Strauss 1967) there have been countless applications of GTM, but also many adaptations and evolutions of the method. With the publication of Strauss and Corbin’s (1990) book came a very real disagreement between the co-originators about the very nature of GTM itself. So, students of GTM have to acquaint themselves with the Strauss and Glaser variants of the method and decide which to use. This book inclines towards the Glaserian strand, for reasons explained later.

Students of the method also have to deal with the fact that many journal articles use the term ‘grounded theory’ as a blanket term for coding and analysing qualitative data. When we attach a code to data, we are also attaching a concept to that data and it is those concepts that help us build theory, as discussed in Chapter 3. GTM is indeed a method that can be used to analyse qualitative data, using codes attached to data, but it is so much more than that, too. It also builds relationships between concepts informed by the codes,
which allow us to build theory. As previously remarked, this is an important and, in my opinion, sadly under-utilised aspect of GTM, especially when you consider that the original aim of GTM was to build theory.

GTM also, in my opinion, is a wonderful method of analysing data and building theory. In this book, I want to share what is, for me, the excitement and passion of doing analysis in this way. For me, the experience of using GTM as a PhD student (Urquhart 2001) was a life-changing one. The features of the method mean that you are so close to the data you gain all sorts of rich insights; these insights almost invariably result in excellent research. I have become an advocate of GTM not so much because I used it for my own PhD, but because experience using the method with postgraduate students has led me to see that it produces strong theory grounded in the data. From a postgraduate perspective, I have found that the use of GTM all but guarantees an excellent piece of research, if applied carefully in all its stages.

Of course, GTM is not for everyone. I have two sorts of postgraduate student – the first sort, when encountering GTM, look as if they wish to run from my office immediately and beg to be able to use a framework or theory from the literature instead. The second sort look somewhat nervous, ask some questions about how long the analysis will take and generally have some unexpected joys along the way as they build concepts from their data and experience theory building. It is to this second sort of student that this book is dedicated – I hope it is a useful companion on your journey. I also hope fellow researchers will find this book a useful reference on grounded theory.

What is grounded theory method (GTM)?

It is perhaps best to start with how the creators of grounded theory defined their method, in their seminal book that launched grounded theory (Glaser and Strauss 1967). They defined it as ‘the discovery of theory from data – systematically obtained and analysed in social research’ (Glaser and Strauss 1967: 1). The key point here is that the theory produced is *grounded* in the data.

The emphasis on theory in the original book is in sharp contrast to the use of grounded theory method (GTM) today, where it is known primarily as a method of qualitative data analysis. So, one of the emphases in this book (as well as helping with practical issues of coding and data analysis) is on what to do with that coding – how to build the theory from it.

For the record, the following are the key features of GTM as explained by Cresswell (1998) and Dey (1999). They provide a good starting point and we’ll discuss them in the next sections.

1. The aim of grounded theory is to generate or discover a theory.
2. The researcher has to set aside theoretical ideas in order to let the substantive theory emerge.
INTRODUCTION

3 Theory focuses on how individuals interact with the phenomena under study.
4 Theory asserts a plausible relationship between concepts and sets of concepts.
5 Theory is derived from data acquired from fieldwork interviews, observation and documents.
6 Data analysis is systematic and begins as soon as data is available.
7 Data analysis proceeds through identifying categories and connecting them.
8 Further data collection (or sampling) is based on emerging concepts.
9 These concepts are developed through constant comparison with additional data.
10 Data collection can stop when no new conceptualisations emerge.
11 Data analysis proceeds from open coding (identifying categories, properties and dimensions) through selective coding (clustering around categories) to theoretical coding.
12 The resulting theory can be reported in a narrative framework or a set of propositions.

Let’s consider first the statements about theory.

1. The aim of grounded theory is to generate or discover a theory.
4. Theory asserts a plausible relationship between concepts and sets of concepts.
12. The resulting theory can be reported in a narrative framework or a set of propositions.

It’s important to appreciate, then, that GTM is all about theory, even though its procedures are often more commonly used to analyse data than generate theories. Chapter 1 of the revolutionary book *The Discovery of Grounded Theory* (Glaser and Strauss 1967), which launched grounded theory, states that the aim of the book is to generate theory based on data, rather than verify ‘grand theory’. The authors also contended that the classic theories of sociology did not cover all the new areas of social life that needed exploration. They also discussed the idea of qualitative versus quantitative data and concluded that both types of data are needed to generate and verify theories.

So, the very first book on GTM begins by putting forward two major points:

- the need to generate new theories rather than force data into a few existing theories
- the idea that qualitative data and quantitative data are both useful.

It is worth, at this point, discussing what a theory actually is.

We all formulate theories in everyday life – for instance, we might say, based on our experience, that people who are good at maths tend to be more introverted (my apologies at this point to all those people who are both fine mathematicians and extroverts – this is just an example). This working theory is based on our experience of the world and may not be true. It is, after all, an individual perception, so not really ‘grounded’, in the true sense of the word, but it has the key components of a theory: some constructs – ‘good at maths’ and ‘introversion’ – and a relationship between the two.
Shirley Gregor (2006), in her paper on theory, gives some useful building blocks of a theory. Table 1.1 shows how these theory components appear in GTM.

So, the theory discovered or generated as a result of using GTM is often represented by a narrative framework, a diagram or a set of hypotheses. In all three cases of representation, it is important that there be a plausible relationship between the constructs because this is a cornerstone of all theories. In GTM this relationship is not usually causal because, in the majority of cases, it uses qualitative data. The relationships between constructs therefore tend to be more a case of ‘A is a part of B’ or ‘A influences B’.

There is extensive guidance in GTM on how to formulate these relationships between constructs (see Glaser (1978) and Corbin and Strauss (2008)). These are the most controversial aspects of GTM, as we will discuss later. For now, though, the important thing to note is that GTM is a method of generating theories and theories contain relationships between constructs.

Table 1.1 Components of a theory in GTM (adapted from Gregor 2006)

<table>
<thead>
<tr>
<th>Theory component</th>
<th>Definition</th>
<th>In GTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means of representation</td>
<td>The theory must be represented physically in some way – in words, mathematical terms, symbolic logic, diagrams, tables or graphically.</td>
<td>Theories are often represented by a narrative framework, diagrams or statements of hypotheses.</td>
</tr>
<tr>
<td>Constructs</td>
<td>The phenomena of interest in the theory (Dubin’s ‘units’). All of the primary constructs in the theory should be well defined. Many different types of constructs are possible – for example, observational (real) terms, theoretical (nominal) terms and collective terms.</td>
<td>The aim is to get to one or two core categories or constructs. This makes for a more coherent theory. All the constructs in a grounded theory, are, well, grounded in observations; they come from the data.</td>
</tr>
<tr>
<td>Statements of relationship</td>
<td>These show relationships between the constructs. Again, these may be of many types – associative, compositional, unidirectional, bidirectional, conditional or causal. The nature of the relationship specified depends on the purpose of the theory. Very simple relationships can be specified, such as ‘x is a member of class A’.</td>
<td>Because the theory is often based on qualitative data, relationships are not often causal. There is a lot of guidance about the sorts of relationships that are possible between constructs, in the form of coding families (Glaser 1978) and a coding paradigm (Corbin and Strauss 2008).</td>
</tr>
<tr>
<td>Scope</td>
<td>Specified by the degree of generality of the statements of relationships (signified by modal qualifiers, such as ‘some’, ‘many’, ‘all’ and ‘never’) and statements of boundaries showing the limits of generalisations.</td>
<td>The aim is to produce substantive theories that pertain to the area being investigated. The scope and generalisability can be extended by theoretical sampling (Glaser 1978). The substantive theory can and should be engaged with existing theories – existing theories can also be seen as slices of data that help build the theory.</td>
</tr>
</tbody>
</table>
INTRODUCTION

GTM and the literature

A key feature of GTM is the following point from our list above.

2. The researcher has to set aside theoretical ideas in order to let the substantive theory emerge.

Of all the features of GTM, this is the one that causes most difficulty for new users. The idea here is that the literature about whatever you are researching is referenced after, not before, you build the theory. Glaser and Strauss recommended this because they wanted the data to speak to the researcher, rather than for the researcher to force theories on the data. To me, this is one of the reasons GTM was revolutionary in its time and still is tremendously relevant, today. The idea that we should seek to see what the data indicates, rather than shoehorn it into a theory that already exists, means there is more chance of discovering something new. It also seems to have more integrity as a research process, because it does not seek to impose preconceived ideas on the world.

Of course, no one enters the research process as a blank slate – we will all have read something about the phenomena. The founders of GTM ask that we put that aside, so we do not influence the coding of our data. In practice, it’s quite possible to do a literature review before we enter the field – on the understanding, though, that it does not influence the coding process. Once the theory has been developed, then we engage our theory with the existing theories and use them to help with the densification of our emergent theory. The literature review we developed initially may then change.

This is not the barrier to using GTM that people might think. In Chapter 2 I give some more advice and information on how to deal with the literature, but, for now, suffice it to say that I have seen many students conduct a literature review and do a successful GTM study! It’s the use to which the literature is put, not the act of searching the literature in itself, that is the key point here.

Using GTM in the field

The following aspects from our original list above all relate to using GTM in the field.

3. Theory focuses on how individuals interact with the phenomena under study.
5. Theory is derived from data acquired from fieldwork interviews, observation and documents.
8. Further data collection (or sampling) is based on emerging concepts.
It is true to say that many GTM studies do focus on how individuals might interact with the phenomena under study – for instance, how a work group might react to a new information system – but the use of GTM is quite flexible and varied. I have seen it applied to all sorts of phenomena, from analysing citation information to the design of software. GTM is perfect for studying micro-phenomena, too, because it involves the close examination of data, but it’s worth considering that GTM can be used to study larger units as well, such as firms. This is consistent with the idea of theory building – which is when we build larger theories from smaller, substantive ones. We’ll discuss this further in Chapter 4, how the unit of analysis may influence a GTM research design.

As previously stated, GTM builds theory from the data acquired from fieldwork interviews, observation and documents. All these data sources are qualitative, and the use of qualitative data fits well with the inductive process that GTM is. When we say that GTM is inductive, what we mean is it reasons from the ground up – from specific instances in the data to more general conclusions. How the data is analysed – completely or partially – will, again, depend on the research design (discussed in Chapter 4). As a point of interest, it’s worth noting, too, that quantitative data can be used in GTM, as part of a mixed method design (again, we’ll look at this option in Chapter 4).

It’s also important to note that the use of GTM implies overlapping data collection and analysis. This means that researchers analyse the data in the field and use the emerging concepts from that analysis to decide where to sample from next. This process is known as theoretical sampling, because the emerging theory directs future data collection. So, for instance, if a particular concept (such the effects of job losses on remaining staff) arises from an interview, the researcher could decide to carry out more interviews (with other individuals who have witnessed such job losses). This strategy may not always be practical, depending, of course, on the amount of access granted to the researcher. Sometimes there may be only a set number of interviews permitted in an organisation. So, one good idea for a grounded theory study is to allow for more than one phase of data collection, as Charmaz [2006] suggests (we will return to this in Chapter 4).

Theoretical sampling does two things:

- it enables researchers to build up justification for concepts in the theory by finding more instances of a particular concept
- it allows researchers to follow an emerging storyline suggested by the data.

Data analysis using GTM

 6. Data analysis is systematic and begins as soon as data is available.
 7. Data analysis proceeds through identifying categories and connecting them.
INTRODUCTION

9. These concepts are developed through constant comparison with additional data.
10. Data collection can stop when no new conceptualisations emerge.
11. Data analysis proceeds from open coding (identifying categories, properties and dimensions) through selective coding (clustering around categories), to theoretical coding.

These characteristics from our list above are all to do with data analysis – the core of GTM. It is also the aspect most often leveraged independently of theory building. It is certainly true to say that the data analysis procedures are systematic, which is one reason they are so frequently leveraged by those who may not be building a theory. These procedures are well-known and described in the literature and, as such, are seen as a very legitimate way of analysing qualitative data.

In a systematic fashion, often analysing the data line by line, categories are attached to the data. This is ‘coding’ and we will discuss this extensively in Chapters 3, 5 and 6. A category is generally a low-level concept attached to a particular piece of data. So, for instance, we might look at a line of text and decide that, in this line, the person is trying to justify a decision. So, we might call this category ‘Justification’, then find more instances in other parts of the data we are analysing.

The important thing to note here is that the connecting of the categories is as important as the naming of them because, if you recall, an important component of a theory is building relationships between constructs. So, it’s helpful to see the data analysis in grounded theory – which concentrates on naming categories and connecting them – as laying the foundation for constructs and relationships. As previously stated, further data collection is ideally based on the concepts emerging from such analysis.

Constant comparison is simply the process of constantly comparing instances of data labelled as a particular category with other instances of data in the same category. This is often described as the heart of GTM. It is no more than a simple rule of thumb, but it is also a way of thinking – to ask yourself, ‘How does this instance I have labelled X, compare with all the other instances of X that I have labelled?’ It really does work as a method of analysis because it encourages researchers to consider closely what they are analysing.

It is usually quite obvious, in a grounded theory study, when to stop data collection. It is when the researcher finds no new concepts are emerging from the data – all that is happening is there are more instances of existing categories. In this way, theoretical saturation is reached – the particular category is seen to be ‘saturated’, that is, full!

While different versions of GTM use slightly different stages of coding, I find it helpful to think of just three:

1. open coding
2. selective coding
3. theoretical coding.
These are the stages recommended by Glaser (1978) and they have the virtue of simplicity.

Open coding means just that – going through the data, line by line or paragraph by paragraph, attaching codes to the data and very much staying open, seeing what the data might be telling you.

The open codes are then grouped into larger categories in the stage of *selective coding*, on the basis of the key categories that are shaping the theory.

In *theoretical coding*, those categories are related to each other and the relationships between them considered. You may well have spotted that this is the act of building theory – finding constructs, connecting them and considering the nature of that relationship.

Why is it useful?

Let me count the ways! In this book, I am an unashamed advocate of GTM because of my experience in using it for research and with postgraduate students. I can honestly say that every time I have experienced grounded theory research, I have experienced new insights. Why should this be so? I think it is because GTM encourages us to take a close look at the data. Coding line by line or at the paragraph level encourages this close relationship with the data. Of course, critics of the method will tell you that what is produced is a hopelessly detailed theory, but there are, of course, ways you can ‘scale up’ that theory so it can then be engaged with other theories – and it is this which is a vital part of the process and how we get value from the method.

GTM has an obvious appeal in instances where no previous theory exists, so for new phenomena it’s an ideal choice. In information systems – my own discipline – we are constantly grappling with new technological developments that cause something of a rethink, especially when it comes to how people relate to information technology – social networking websites are one such example.

GTM is also said to be good for studying processes (Glaser 1978) and the concept of a process in research is a very useful one. I have found it particularly useful when analysing interview data – probably because paying close attention to what people say is likely to lead to new concepts. Looking at the data line by line, as Strauss (1987) suggests simply encourages more analytical thought. So, while a larger-grained, thematic analysis of interviews might seem superficially attractive, it does not give the results that GTM does. I have seen this many times with postgraduate student projects.
INTRODUCTION

The most innovative and exciting aspects of GTM, in my opinion, are twofold:

- the focus on building theory – as opposed to simply trying out existing theories to see if they hold in a particular instance – encourages scholarship and innovation in all disciplines
- the fact that researchers are encouraged to not think about existing theories helps that innovation.

It should be noted, though, that this does not mean researchers should ignore existing theories – we are all under a strict obligation to engage our emergent theories with existing literature (Strauss 1987). This idea is beautifully put by Dey (1993) when he says that researchers should have an open mind, as opposed to an empty head. So, as we have seen, the literature review is delayed. In practice, most people find a non-committal literature review helpful, but it should be noted that its relevance is completely determined by the emergent theory.

It is perhaps best to conclude with a comment from a former PhD student whom I overheard talking to someone else about his experience with GTM. He said he found it hard and time-consuming, but that it had given him an excellent PhD. So GTM is not for the faint-hearted, but it is for anyone interested in doing academically rigorous and exciting work!

Summary

- This chapter first explained its aims – in short, to be a clear and accessible introduction to grounded theory method (GTM) using worked examples to explain the coding and theory-building process.
- It also pointed out that this is a personal view of GTM, derived from practical experience. GTM has a complicated intellectual history, so I have opted for what in my view is simplest and most flexible, while remaining true to its original ideas advanced in 1967 by Glaser and Strauss.
- The chapter then examined the issue of whether or not GTM is, in fact, difficult. It is true to say that GTM has its fair share of complexity, but at its heart is an elegant and simple method for analysing data and building theory.
- We then had a brief foray into the features of GTM – 12 in all, divided into 4 themes – theory, GTM and the literature, using GTM in the field, and data analysis using GTM.
- When discussing theory and GTM, several points were covered. First, what a theory actually consists of was examined, then, second, discussed in the context of theories produced by GTM.
- The stance that GTM takes towards literature was discussed as being a feature that sometimes causes difficulty for novice users. GTM asks that we put what
we have read on one side when analysing the data and keep an open mind. Though the literature review is, thus, to be delayed, it does not, in my mind, preclude researchers from doing a draft one.

- The chapter then briefly discussed some issues around using GTM in the field. GTM has as a key idea that the emerging analysis should dictate future data collection – a process known as theoretical sampling.
- We then had a brief introduction to data analysis procedures in GTM, where categories are identified in the data and connected to other categories.
- I finally concluded with a section in which I unabashedly put forward the many reasons for my thinking GTM is a wonderful research method. I argued that the theory-building focus of GTM is excellent for scholarship and innovation in all disciplines. The detailed engagement with the data that GTM coding procedures demand, in my view, increases the chance of finding something new that can then be substantiated in other settings.

EXERCISES

1. Type the words ‘grounded theory’ into a search engine such as Google or Bing. Analyse the first page of results. What academic disciplines do the results come from? Pick any result that has as its subject ‘What is grounded theory?’ Name three differences between it and the description in this chapter and three commonalities.

2. Now type the words ‘grounded theory method’ into the search engine. Is there any difference between the search results you got for exercise 1 and the results you have now? Name three key differences. For the research papers in the results, identify which academic disciplines those papers come from. Are they different from those given in the first set of results?

WEB RESOURCES

http://en.wikipedia.org/wiki/Grounded_theory This Wikipedia entry gives a fairly comprehensive overview of GTM. That said, it is weighted towards the Glaserian view of GTM. As you will find, many people also use Straussian GTM. Further discussion of the differences between these two strands of grounded theory can be found in Chapter 2.

www.methodspace.com Methodspace is Sage’s community for researchers. It’s a good place for novices to find resources, follow certain researchers and post queries. Recommended.

www.mendeley.com This is a free citation manager and social network for researchers. New research students can find it effective in helping them to organise their literature searches and find other colleagues with similar interests.
FURTHER READING

Suddaby, R. (2006) ‘From the editors: What grounded theory is not’, Academy of Management Journal, 49: 633–42. This is an interesting editorial, directed at the management discipline. Suddaby discusses the characteristics of GTM and tackles the problem of mislabelling grounded theory.

Urquhart, C. and Fernández, W. (2006) ‘Grounded theory method: The researcher as blank slate and other myths’, ICIS 2006 Proceedings. Paper 31. At the same time that Suddaby’s article was published, though we were unaware of it at the time, a colleague and I considered the myths of grounded theory in a conference paper. It is a simple introduction to GTM and the myths surrounding it from the perspective of someone new to GTM.

FREQUENTLY ASKED QUESTIONS

Grounded theory looks really difficult. Is it more difficult than other qualitative research methods?

Personally, I don’t think it’s any more difficult than any other method. All require that you invest time to learn how to use them. GTM does differ in several key respects from other qualitative methods, however. First, it has a controversial intellectual tradition. This means that first-time users have to make sure they are familiar with the main issues concerning this tradition and can defend their use of GTM. Second, it is unique in its very detailed examination of data, which can and does result in new insights. Such detailed examination requires patience and an analytical eye, which are both skills that can be acquired. Third, it is interested in building theory, which means you have to understand theory and levels of theory. These three aspects mean that first-time users have to be scholarly – no bad thing and no bad foundation for an academic career if you are just starting out! Generally, a piece of GTM work, especially for a PhD thesis, will yield several good journal articles, so the time invested in learning the method is usually worthwhile.

If GTM is so good, why isn’t it used more in my academic department? Why isn’t it more popular?

One answer to this question lies in the dominance of quantitative approaches in some academic disciplines. Qualitative research is in the minority in many disciplines and GTM is one method among many. It is alone in qualitative research methods, though, in having an emphasis on building theory. Interestingly, this means that it does actually have the potential to contribute to quantitative research because it should be possible to build a theory using GTM for future testing. As for popularity, the searches you have done for the exercises above should have shown you that it is used widely in many disciplines. Most people who have used the method will tell you that it works and I think this is because it is systematic in its approach. In Chapter 2, we will talk more about defending your use of GTM from an academic perspective.