PART I

Setting up
THIS CHAPTER

Project Plan

Concept

Purpose, goal & outcome
What are these for your project?

They guide

Designing the project
What are you asking?
How are you asking it?
What data will you need?

Project as process

Logging your design
Starting a log trail

Later CHAPTERS

Data planning
(Ch. 2) & recording
(Ch. 3)

How to move up from data
(Ch. 4)

Idea development
(Chs 5–7)

Theory building & testing
(Chs 8, 9)

Writing up the outcomes
(Ch. 10)

Initial Activities

Entering the field

Declaring your ideas
Literature, 'bias', initial thoughts

Learning your software
Choosing, learning, starting the project

Data records, Memos
(Chs 3, 4)

Models (Ch. 4)

Sets directions & acceptability conditions for

Sets practical plans for

Take all into account when

Log later changes in

Log development in all these

Write about & log using

Sketch using
ONE

Setting up your project

This chapter is about starting out sure-footed. It advises on ways of specifying what you are setting out to do and how you will do it. Starting out on this planned path requires reflecting on your research question, the data needed by your question and your relationship to those ‘data’, declaring the assumptions you bring with you, entering the field, logging the plans and the journey, and learning the software tools you will use on the way.

Starting can be the hardest part of any new task. If it looks formidable, putting off starting is tempting. But if you are intending a qualitative project, putting off starting is high-risk behaviour. You need to get started before the data start building up.

Your enquiry will rapidly gain momentum. If you have not organized your project, considered the design, the data needed and the ways they will be handled, you may find yourself swamped by a flood of complex, contradictory accounts of experiences that are only partially relevant to your question. If you have not reflected on your own relationship to the question and the data, you can be stalled by doubt and confusion. This chapter suggests steps to avoid these dangers.

Setting up a qualitative project need not be daunting if it is designed. In qualitative research, you do not have to be able to specify everything the research task will involve. You are aiming to learn from the data, and this means that you may shift emphasis to a new question, or divert to interview some people who prove significant. So, qualitative enquiry is fluid and flexible. You will be able to change your design as you learn from the data. But starting well does require planning how you will start.

Setting up a project is a process of getting ready, not a commitment to a conclusion. Qualitative researchers, like surgeons and chefs, set up carefully to be ready for whatever reasonably may be expected. Like the surgeon or chef, you should be able to describe what you aim to do, to say what it is likely to involve and what the expected outcome will be. You should specify how you will go about doing it competently, and be ready with the tools you may need, though you normally will not assume that you can see at this stage exactly how the project will end.

Now to your project.
Purpose, goal and outcome

At the early stages of project proposal, it is easy to confuse the purpose of your project with its specific goals, and easy to leave out of consideration what sort of an outcome is required. These are three very different aspects of the ‘results’ you are aiming for. A first step towards design is to distinguish them clearly.

- **Purpose:** Why this study? Will it help ameliorate some societal problem? Will it inform the literature? Will it drive policy making and decision making? Is it more generally to add to our understanding of the social world? Clear answers are needed here, to set the context, to shape suitable outcomes, and to justify the enquiry and the time and money it will involve. Here’s a possible answer for an (imaginary) project.

 Our purpose is to assist the health authority to improve child health delivery in the community.

- **Goal:** What question are you going to answer, and what shape do you think the answer will have? This is a different question from your purpose. (The purpose of a game may be winning, achieving team spirit or fitness. A goal can be kicked at.)

 We are investigating for the health authority whether and how parents bypass health authority instructions for their children’s health. We expect to provide an explanation of why some parents ignore advice, in terms of parental attitudes, ideologies and beliefs.

- **Outcome:** What sort of a product would achieve that purpose, and that goal? Are you producing a report for an action group or a client, a thesis for a supervisor or a string of papers for a journal? What do these (possibly diverse) recipients expect, so how will you shape your results into reports, presentations, papers, etc.?

 The health authority is concerned that there seem to be inefficiencies and poor targeting in this area of its health budget, and wants a brief report with a half-hour audio-visual presentation for senior planners on practicalities. The doctoral programme requires a dissertation, in appropriate theoretical context. And you want to make a real contribution to what seems to you a most unsatisfactory literature in this area, so others may use your theories.

It is usual (though never required) that qualitative projects start without a firm and fixed goal. But research without purpose is a major practical and ethical problem. And it is highly risky to start with no idea whatsoever about the sort of outcomes that would be satisfactory.

Thinking it through

If you don’t know the purpose of your project, ask seriously, why are you doing this? The question is an entirely practical one. (I don’t mean ‘How dare you do this?’, though I have been tempted to say that to researchers using intrusive methods in highly sensitive areas when there is no apparently useful purpose.) Practically, you are less likely to succeed if you don’t know why you are starting. You will need a purpose to drive your project, and it will need to be better than ‘to get through this course’.
Now, do you have more specific goals? Is there something you want to answer? If so, is it answerable? Thinking through these questions will help you design the project. And importantly, what do you expect to offer as an outcome? Ideally:

- It should offer something more than the participants in your research could have reported. (Otherwise, you’ve wasted their time and yours.)
- It should present conclusions that account for your data in terms of the project’s goals. This has to be an adequate account, so you will be able to claim that it ‘makes sense’ of what’s going on in the data. (This is your overall duty as a researcher.)
- It should be usable; you or others should be able to do something with the outcome. (Otherwise, why do the project?) You can’t at this stage predict how the project outcome will in fact be used, but you can aim from the start to make it usable. If it is well informed by the literature, perhaps it will be used to improve existing approaches and theories, or to compare with other studies. If the scope of your study is sufficient, and the data sufficiently rich and well analysed, maybe it will find a practical use. But your study will be better and your motivation maintained if you are intending to produce something usable.

It is very helpful at this earliest stage to write about the outcome you aim for. In many ways this will inform your design. The outcome wanted will indicate the scope of data needed for representing all the views on a problem, for example you may need to seek data on contrasting types of cases (e.g., institutes of technical education as well as academic education). The desired outcome will also set requirements for the coding needed (Chapter 5) in order to ask the questions demanding answers (Chapter 8). *Is it only the working-class parents who bypass diet education programmes? How differently do working-class and middle-class parents see the relevance of these programmes?*

Designing the project

Design is essential for qualitative research. Very often, novices are given the contrary message that qualitative research can start, even finish, without being designed. But this is unacceptable, for ethical and practical reasons. Projects that ‘just happen’ will rarely happen in ways that offer the data needed or an adequate answer to the research question.

If you are planning to work with qualitative data, it is probably because you are trying to learn something new, rather than test something that is known. This may require studying people’s accounts, or your observations, of their sometimes private thoughts and behaviour. Could you not answer your question with more publicly available data, such as the analysis of documents? Are you handling the situation sensitively and the data respectfully? An ethics committee will demand answers to such questions in most research situations, and if they don’t, you should.
Practically, you can’t start without thinking through where you want to go and what data you will need. This early design need not be fixed or rigid. Qualitative designs can and usually should be revisited and reconsidered at each stage of the project, considering what has been done and why, building on what you are learning, working out what you are asking and what sort of data will be necessary to answer that question. But you need to start with a plan.

This should not be a secret plan! Tell it to everyone who will listen – and listen to their responses. Think ahead, to when you will be telling the project to an audience: who are you trying to convince, and how would they be convinced? What would you need to apologize for? Adjust the design to cover these risks. In scoping your project and designing the data records, design for a sufficiently broad base to ensure that you would know if you had arrived at a partial picture.

If you are working in a team, present each stage of design for debate. Draw it or write it up, and discuss it with as many colleagues as possible.

The CORE DESIGN QUESTIONS

The discussion below offers a minimal checklist of things to answer in order to set up the design of your project. Many aspects of your project cannot be designed ‘up front’, but the following three questions must at least be asked:

1. What are you asking?
2. How are you asking it?
3. What data will you need to provide a good answer?

Each of these questions will be revisited many times during the project.

What are you asking?

This is no simple question. Many researchers fail to define what they are asking because they propose the project only at one level, either a very general interest or a very specific topic. Try to embrace both. To do this well, you need to work like an eagle, soaring over the landscape, locating something small that can be captured, diving in to take it and then making sure it’s not dropped!

GETTING TO THE GOALS

It is often hard to get your grip on something ask-able. If you have this problem, work down through funnelling questions:
1. What is your broad research area?
2. Within that area, what questions in the literature, or the society, are still being asked? What gaps in knowledge can you identify?
3. Within that focus, what is your topic?
4. And within that topic, what is the question being asked?
5. Within that general question, what researchable question could you attempt to answer—given your resources and skills?
6. And now consider the relation between you and that question: socially, ethically and practically where do you stand?

Note, that these questions are at different levels, and they take you right down into the project. If you are new to this process of refining what you are asking, talk it out, diving down from a broad interest to a specific question that you can research.

In a team project it is especially important to work through these layers of questions, so there is clear understanding of purpose or purposes. Don’t try to impose agreement on the same researchable question for everyone. The members of a multidisciplinary or mixed skills team of course will have different questions, and the design may represent these. But if there are differences, they do need to be discussed. If some colleagues really don’t know what you are asking, or worse don’t think it’s worth asking and suspect that your work is subverting theirs, the team will be in trouble.

Working with the questions above, the design will expand.

DOWN TO THE RESEARCHABLE QUESTION

1. Ask where are you working, and what are you interested in? Young people’s health.
2. What are the interesting or important questions of that area, what questions in the literature, or the society, are being asked? What are the gaps in the literature? What questions do the practitioners want asked? We’re pouring resources into health programmes, but does anyone know if they are completely wasted? It seems at least some of the parents bypass them.
3. Next, what do you want to know? Locate a topic. Influencing parent perceptions and control over children’s diet. Why do you want to know about this? Anecdotal evidence suggests this might make programmes more effective.
4. Now, in discussion with colleagues, or using reading, arrive at a research question that needs to be answered. Why are diet education programmes for parents

(Continued)
so varied in effectiveness? Spend some time checking that it doesn’t have an answer yet. (Review literature, search websites, talk about it.) Wonder whether it’s worth answering, worth the time and effort and the contributions you are going to be requiring from participants.

5. Now, is it a question you are able to answer? This is what I call a researchable question. Focus on questions that can be asked and answered by you with the resources available to you. How do parents perceive health programmes, in this town, and how do they portray them to their children? What sort of a researcher and resources are needed to answer this? Are you that sort of researcher? And are there any ethical as well as practical issues that would stop you doing it well?

6. Where do you stand in relation to this question? Design is particularly important where the researcher is studying a situation they belong to. You are the health promotion officer whose task is to promote healthy programmes in schools. On your home ground, already accepted as a visitor in the schools, it would seem that your project is already half-completed! Everyone will talk to you, observation is already underway. Beware! The very ease of making data is a warning of the need for design. Ask in particular: Will your question be adequately answered by interviews conducted by an insider? What sort of data will result from a health promotion officer talking to parents whose work patterns do not permit supervision of children at home?

You are ready to proceed with a very careful research design.

How are you asking it?

Now you need to locate your project methodologically.

Studies conducted in an academic context are expected to be appropriately located in one of a variety of qualitative methodologies; that is, ways of reflecting on and studying situations and seeking and interpreting our understanding of social phenomena. If this is your context, you’ll be reading about methodology to inform your consideration of different methods of enquiry and the way you approach analysis. Locating the study methodologically will guide you to finding the fit between question, data and analysis.

However, a high proportion of qualitative research is done outside the methodological literature. Researchers are required, by their funders, their supervisors or their own motivation, to get the best possible understanding of a situation, a group or a problem. If this is your situation, you still need to seek a fit of question, methods of enquiry and analysis. How are you asking your research question? Is that the appropriate way of asking it and what different results would you gain by asking in other ways? Which combination of data, from which methods of enquiry, will allow you to answer it well?
Whatever your context, your study needs a fit between the question being asked, the sort of data needed to answer, the methods being used to make the data, and the outcome you are seeking.

If you use focus groups conducted with the parents, what will you learn and what questions might you answer with 5 such data? How different would your study be if based on a year's work in the district as a health visitor?

The ten projects on the website offer a wide range of research methods, each method selected as appropriate to the question being asked. For each project, there is a page on setting up. Skim these now to get a feel for the examples provided, and the variety of research designs represented.

FINDING A FIT BETWEEN QUESTION, DATA AND METHOD

1. How are you asking your question? Is that the only way of asking it and what different results would you gain by asking in other ways?
2. Read about different qualitative methods, and learn to discriminate between them. Then carefully select the one that fits your study.
3. Reflecting on these differences, and on your own skills, design your own project to gain the sort of understanding its question needs.
4. Whatever the context, keep asking how the project's question and approach will shape the data. Ask often if there might be other ways of doing this, with what likely outcomes?

If you are aware that you are asking your question one way, and that other ways would provide different answers, you will be better prepared to organize and interpret your data. This is particularly important if the data you are handling were created or acquired by someone else. Researchers brought into an ongoing project or relegated to a lowly assistant role can acquire data without participating in design. If that's your situation, it is especially important to understand why (and by whom) you have been provided with (only) these records of these research events or processes.

The literature on qualitative methodologies may seem to have little relevance to large research projects designed to combine
qualitative with quantitative data. Rich accounts from field research are very unlike open-ended responses to a survey with large numbers of respondents. But the study still requires a fit of question, data and method. If your intention is to handle the open-ended responses as qualitative data, reflect on the question to be answered, the ways these responses are being elicited and the context required to interpret them well. In such projects, design may be necessarily rigid. The requirement for consistency in a survey, for example, will mean that the researcher will be unable to return to redesign questions. So it is especially important to design and test questions that seek the needed balance of information, from the start.

What data will you need to provide a good answer?

The next questions for research design are about data, and there are always three different sorts of questions. Two are fairly obvious. Firstly, what data are needed to cover your topic area adequately, and secondly, what are the types of data needed to answer your question? Then comes a question that is huge: what is your relationship with this body of ‘data’?

In designing data for qualitative research, it helps to think in terms of how well the data will reach across the topic. You will want to be sure that the data have adequate scope, rather than that they representatively sample a given universe.

And then you need to ask about the sorts of data needed to do justice to this topic. This is a different question from ‘What data will I need to test this theory?’. You are seeking data that will allow you to ask a question, maybe challenge your assumptions, and arrive at a new understanding.

DESIGNING YOUR DATA

1. **What is the scope of this project?** What variety and scale of data are required by your question?
 - What are all the settings that you need to explore? Qualitative research is rarely restricted to only one.
 - Within the selected setting(s), what types of cases (for example, of people, Institutions or places) do you need represented? (And what won’t be needed?)
 - If your question contains comparison, or linking of qualitative and quantitative data, pay particular attention to the data scope and the types of cases you seek.

As you scope the project, sternly ask the relevance and usefulness of each area of data you consider seeking.
2. What is the nature of the data required? The next chapters discuss the nature of qualitative data created by different techniques of enquiry. At this stage, you need to address in the most general terms the representations you will be seeking of the situation studied:

- What sorts of data are needed? Does your chosen methodology require, for example, that you record the words people use to tell their perceptions of their worlds, or that you record your own observations of their behaviour? (Again, what won’t be required?)
- Take particular care that your design attends to ethical considerations. If the question doesn’t need intimate accounts of people’s experiences, to seek these is inappropriate.

How much data? Noticeably absent from the answers above is ‘the sample should be big enough’. That’s because size of data records is never, alone, a relevant criterion for a good outcome. Numbers of cases needed for a comparative study may be decided in advance, or numbers of interviews set for a survey. But completion of a qualitative project ideally happens when the question is answered, and projects evolve as researchers come to understand their data and need to ask new questions. Nevertheless you are very likely to be working within a time and money budget, so you have to come up with a satisfactory answer at this design stage.

Perhaps the most common question from novice qualitative researchers is, ‘How many [interviews, cases, visits, etc.] should I do?’ There is only one situation in which a firm number can be given – when the research question or commission specifies a given number of cases. (And then you will still not know how many times you will need to interview these people.) Otherwise, the only safe answer is, ‘When I have the data needed to answer my research question and all subsequent pertinent questions arising from the data’. You may be required by research grants bodies or committees more familiar with quantitative research to specify in advance a number of visits or interviews. Of course you must do so if required, but it is advisable to explain that the method requires that you revisit your design during the project once informed by the early analysis. Always design a stage of data expansion within the project. Useful in explaining this requirement is the term ‘theoretical sampling’, which refers to later sampling directed by the discoveries and concepts developed (there is more on this process in Chapter 7). The term, used in grounded theory projects, is now recognized outside that context as a label for this reviewing and revisiting process.

Too much data? Well-designed qualitative research projects are usually small, the data detailed and the techniques designed to discover meaning through
fine attention to content of texts or images. These techniques take time and do not need large samples. To confront even a little of such data is challenging. Most researchers go through a period where they feel they have too much data, often very early in a project when they have hardly started. But from there, if the project was designed to make the data the question needed, they go on to learn to handle those data skilfully and assess accurately how much is needed. There is of course no simple numerical answer to ‘how much is too much?’ It depends, as has been argued above, on your question. But a qualitative project will normally have relatively few data records, certainly not many hundreds.

In some situations the researcher has little control over the volume of data, or there is a very good reason for there being very large quantities of data. It is no help to these researchers to tell them they should not be in this situation. No qualitative technique assumes projects with bulk data and many simply won’t work if they are applied to very large numbers of cases or volumes of text. But some techniques can be adapted to use by the researcher across a bigger project or by carefully partitioning it. Such advice is provided where appropriate throughout the following chapters.

A variety of data? A note on triangulation

It is common for qualitative project design to include the use of multiple sources of data or ‘views’, with the aim of bringing many perspectives to bear on the question. ‘Triangulation’ is a term widely used for such designs, the most common form being combinations of qualitative and quantitative data. Designing a project to address the same question with a variety of data is challenging. Simply juxtaposing different data sources or types is unlikely to provide comparable data. Such a design must ensure that the same question will be addressed by each of the types of data or approaches. So very careful planning is required for ‘triangulation’ that is useful. If you are considering such a design, the different sub-projects must be very carefully scoped, and the focus of the data carefully planned. (See suggested readings at the end of this chapter.)

And the outcomes of even a well-planned ‘triangulated’ project require very careful interpretation. If you are proposing this design as a means of confirming or validating your findings, jump now to the discussion of ways of establishing validity of results in Chapter 7.

You and your data

Now, return to the big question about your project and data. What is your relationship to this stuff you are calling ‘data’?
Qualitative researchers find it hard to avoid that question. This is because the data you work with are collaboratively constructed by you and those you are studying. If you are working qualitatively, it is usually because you are seeking understanding of people’s situation via their own accounts of their perceptions. These are not normally provided as neat heaps of facts, easily collected and summarized. You attempt to enter the world of those you study (and they more or less allow you to); you watch, ask and listen, they give you one of many possible account of their experience; you interpret, select and record. You are hardly an innocent bystander in the process of data-making.

In many research approaches and reports, this complicated collaborative relationship of researcher and researched is simply not recognized. The methodological approach may not direct attention to the ways we as researchers construct data. Or the relation may seem very clear and be presented as uncomplicated – as when the researcher is handling data created and archived by someone else. But it is important to reflect on the ways in which you enter and effect a situation, and create and use ‘data’ from that situation. This is so even (perhaps especially) if your relation to your data seems unproblematic.

In this context, you can get an early feel for the varieties of projects reported on the ‘Methods in Practice’ part of the website. For one researcher, himself ‘inside’ his study of Inside Companionship, the research was understood only in the context of reflections on the construction of data. Two other ethnographic studies offer accounts of challenges in entering the research field as participant: Elderly Survivors of the Hanshin Earthquake and Youth Offender Program Evaluation. Compare with projects where the challenges described are those of locating and then being accepted by people to be interviewed: Mapping Caregiving, the Sexuality-Spirituality Project, Handling Sexual Attraction and Wedding Work. By contrast the project on Leading Improvement in Primary Care Practices was hosted via recognized research channels and two projects handled data provided from earlier projects (REMS and Harassment Complaints).

Entering the field

Once design is underway, you may need urgently to find and research where this project will take place. If you are seeking to participate in the setting (for example, as a member of a group or a resident of the area studied), there may be many weeks of work to learn about it, find and work with contacts and gain acceptance to your proposal and confidence in your ability to participate without being disruptive. Reading on field research will be essential. So too will time to set up your project in the ‘field’: that is, the social and physical place you are going to be studying.
Commenced health visitor rounds and taking only the professional notes needed. Decision to explain project in an open meeting with colleagues next week; meanwhile discussing it informally in casual conversations and keeping checklist of all colleagues on which I record when the discussion took place and response.

Don’t assume that a less participatory method releases you from the requirement to understand the research setting and gain acceptance in it – or to observe once you are there. For any qualitative enquiry, setting up in the field is essential and there is always a process of ‘entering’ the field. If you are observing (‘field research’) this may be more obvious than if your method involves less contact with the people studied (for example, single interviews). But in either case, beginning well will involve mapping the physical, social and cultural terrain. And observing well will enrich your data.

In Mapping Caregiving, the interviewer observed caregiving context and interactions, as well as conducting an interview and mapping exercise. The researcher notes for example how the interview act itself is drawn into one caregiver’s role. In an apparently disorganized setting, on second visit, ‘the family caregiver controlled the flow of people, seeing the interview as her time to be important “I’m being interviewed!”’.

The simplest tasks will be physical mapping, but don’t underestimate them. You may be greatly hindered later if you can’t find your way around in the suburb being studied or the corridors of companies where you are interviewing. And at a more personal level, it may be critical to know your way through the corridors of power in the organization you’re studying.

Social and cultural mapping will be far more complicated. Allow a first stage of time for getting knowledge and gaining acceptance, finding proposed research contacts, and becoming familiar with the behaviour and language of those you wish to research.

This preparatory work can be very time-consuming if the situation to be studied is unfamiliar to you. But getting it wrong will be much more time-consuming.

Declaring the ideas you are taking in

You may have been told that qualitative researchers start with empty minds, no prior theories or concepts. If so, perhaps you wondered what to do with the ideas buzzing in your head about your topic. Now is the time to deal with them.

Start by reflecting on ‘bias’. Qualitative researchers recently avoid this term, since it has been given very specific meanings and warnings in the context of quantitative sampling and error estimation. But ‘bias’ is one of many good English words whose usual, dictionary meanings were distorted by their use in quantitative research.

The noun means a diagonal line or stretch across woven cloth. Cut or hung on bias, the cloth will be slanting. A badly cut garment will hang awkwardly,
pulled by an unrecognized bias. But *haute couture* uses skilful bias-cut all the time, to achieve a perfect drape. All cloth has bias – you can either control for it by cutting straight, or you can use it well, by careful design. The same choice is there in all social research (qualitative or quantitative).

Your concern is with the bad nutrition of the poorer kids, and your anger is about the inability of health education to help them. Low-education parents just don’t seem to care about healthy diet. If you have that concern, and a hypothesis about cause is hidden there, take it out and examine it. Now, build into your project genuine enquiry into the knot of factors that link education and eating. The study will be different, biased to examining those factors, but it will be stronger for your concerns and for your directly addressing them.

The goal of most qualitative research is to learn from the data. But researchers don’t have empty minds, and are likely to have strong values and commitment to their topic. So good research design will always take into account what’s known already, and will build into the design the ways this knowledge can and will be used and tested.

Think of the first stage of this process as declaring what is in your baggage, as you do on arrival at an international airport. If you don’t declare it, you will take in, surreptitiously, assumptions or expectations that will colour what you see and how you see it. Throughout the research, aim to maximize the usefulness, and ensure the testing, of those ideas.

DECLARING YOUR IDEAS

The most constructive way of separating out your prior knowledge and preconceptions is to document them.

- If you are working in a context that requires a literature review, don’t put it off – do at least an early review now. If no review is required, set yourself the task of assessing the different approaches in books, media, professional groups, etc., to the situation you want to study. Carefully and critically account for the different interpretations of this phenomenon. Why did some writers see a particular aspect? Why were some questions not asked? Where are you in that picture?
- Write a very honest and personal paper about what you expect to find when you go to study this situation. How do you expect to feel about what you learn? What do you think will be the important factors in the answer to your research question?
- After your first ‘entry’ to the field, the first contacts or first interviews, write out your experiences in detail. Assess your effect on the situation.
- Make a first collection of ideas about the topic, listing the categories that have been used in others’ accounts, the concepts that seem to matter, and the ideas and hunches you yourself are bringing in.
• Draw a model – simply a sketch on paper – of what you think, at this stage, are the main issues or factors involved in your study, and how you think they relate to each other and to the questions you are asking. Keep that model to revisit and develop as the project proceeds. As you get started in software, you might develop the model on computer, linked to your data (more on modelling in Chapter 9).

None of these activities are intended to 'cleanse' your mind of preconceptions, or remove bias. By doing them, you have acknowledged the ideas you bring into this study and set yourself the task of using and testing them. Your method may require you to 'bracket' these prior ideas, and approach the research data not with an empty mind but with a deliberately open one. Or you may set out explicitly to design a project that will address them. But you won’t sneak them in.

With this documentation, you have produced data records. Your experience and your views are data, to be explored, reviewed and analysed as the project proceeds. You will find in the next chapters discussion of how to keep these records of your ideas alongside what is more traditionally regarded as the project’s data – records you make of your enquiry into other people’s ideas and perceptions.

Designing for feedback

Taking your interpretation ‘back’ to the ‘respondents’ is often a very useful, pleasant and helpful act (so long as that interpretation is not damaging to them and is understandable to laypersons). But note how the terms carry assumptions about data-making. Building into your design that ‘their’ response will be sought for ‘validation’ of your interpretation is highly problematic.

It may be very important to your purpose (or even required by clients or funders) that those you are studying are consulted prior to publishing your report, especially when they are also recipients of the outcome of your research. It can be hugely exciting to have enthusiastic feedback. But feedback must be considered as data, and handled with your other data, and like all your data, it must be considered as a collaborative construct. You and ‘they’ are together making an account of something. So the consultation process takes time and is never uncomplicated. As you plan the stages of your project, plan in any feedback process. Beware of final-moment respondent consultation!

Where the analysis is not addressing a ‘lay’ audience, for example where the purpose is to inform a theoretical debate, it may still be important to explain to participants what you are doing with their words, but you will not seek feedback from them on your analysis.

Different methods use different terms for the feedback process, the most common being ‘respondent validation’ and ‘member checking’. Both those terms
warn of issues you must consider if feedback is part of your design. Can (any) respondent validate your analysis? And does it make sense to check with a member of your sample what you, as researcher, are seeing? Some of these issues are related to those raised by ‘triangulation’, discussed above: these are reviewed in Chapter 7.

Logging your design

You are setting up a project which you want to conclude with claims that you discovered something worthwhile and should be believed. To make such claims credible, you will need at the end to account for each step and shift in the project, and document where your ideas and theories came from – starting now!

In the forthcoming chapters, there will be advice to record your reflections on your role in the project, the ideas you discover, where they came from, how they seem to work in the data, and the amount of confidence you have in these ideas. These ‘logs’, like a ship’s log, detail the journey taken, and they will help you to validate your analysis. Keeping them carefully will leave a trail that you and your reader can follow to assess where you got to and how you got there. The advice for keeping such a trail of log records is marked (I prefer the term ‘log’ because it suggests, as does a ship’s log, keeping a very careful account of the events on a journey. In your field the term may be ‘audit trail’, with the implication that consistency is being audited. Check the requirements against which your work will be assessed.)

Logging purpose, goal and outcome

For the life of this project, people around you, including those you are studying, will ask, ‘What’s your study about?’. Like ‘What are you going to be when you grow up?’ this is an exceedingly annoying question when you are still wondering what the answer is. From the first setting up, aim to be able to answer that question strongly and honestly, and to log the different answers at different stages.

If you have a formal research design document, to submit to a funding body, a graduate committee or a team, this should be carefully stored. Store with it very thorough reflective notes on how you arrived at this project, the discussions around purpose, your ideas about how (and, perhaps, doubts about whether) the current design meets the goals. Check that the design document adequately covers purpose, goal and outcome. Be sure to write about the aspects of the design that were contentious, and how decisions were made.

Your design document probably will not include hypotheses that you are testing, or expected results. But it will need to include an explanation of why hypothesis testing or quantification approaches are not appropriate – why, in other words, this is a qualitative project. When that answer is satisfying (to you and your audiences) your design is probably adequate.
Logging changes in the design

Most qualitative projects share the goal that the researcher learns from the data, adapting enquiry to what is learned. This means your design is going to change. These changes in turn should be logged. Teach yourself, and, in teams, your colleagues, to note significant steps in the project, even small ones. At each point where you feel the project has taken a redesign step (in any direction) note it. This note can go in a research diary or a memo, or any other place where it is safely stored. (If you are working in software, link it to the log trail document, noting there that something shifted.)

LOGGING CHANGES

Your change log should cover four aspects: what happened, why it happened, what were the alternatives and what are the likely results of this shift or step.

1. Note exactly what you did or what happened.
 Changed the research plan: intend to observe for a year as participant observer. No formal interviews will be conducted at this stage. (Ethics permission being applied for.)

2. At each step, record succinctly why this happened (try to record honestly the many levels of explanation). If the reason for change was in your reading or the data, quote or link to that record.
 Well the practical reason was you landed the job as the district health visitor! Why did you apply? Doubts that one-on-one interviewing would give you immersion in the experience of long-term patients. (Well, OK, and also you needed an income.) What led you to that conclusion? Reading on participant observation (detail the advantages claimed and counter-arguments and give the references).

3. Now record if relevant what the alternatives were and why they were rejected.
 No other participant role was available on pay and you have to eat. Decision to rely on interviews was rejected after you tried a few and discovered felt serious discomfort imposing a formal interview on people who had little interaction with outsiders and the patients while polite were responding with very brief, formal answers (link to transcripts of early interviews and your notes). Also realized you simply didn’t have enough knowledge of the situation and kept putting your foot in it – ethical and practical problems (references).

4. Finally, what are the likely results of this shift or step and does it have any implications for the final project?
 Huge implications of this now very different role. (Link to your first field notes.) Expect challenges to your ability to observe and accurately report. (Report reading and consideration re the ‘insider’ role and its problems as well as advantages.)
In teams, there should always be agreement on areas of responsibility for these logging tasks. Some of the processes that need to be logged may appear quite minor, and many will be the responsibility of junior team members. Ensure that somebody writes about change processes, no matter how senior the team member making the changes. And if possible, always discuss these log entries. It’s uncomfortable to confront disagreement late in the project when you are justifying a strategic decision made months ago. *I thought we brought her onto the team after she won the district visitor job?*

Learning your software

When do you choose and learn computer tools?

Now! If you are going on a car trip, packed and ready to go, it is unlikely you would have delayed till now the choice and purchase of a vehicle as well as learning to drive it. If you are planning to use qualitative software, choose it and learn it before you begin, not once the data are becoming too much for you.

Start in your software – storing literature reviews, early designs, memos to the supervisor, research diaries. Good qualitative software is not merely about managing data records, but about integrating all aspects of a project – design, reading, field data, analyses and reports. By the time the project data records are being created, you will be skilled in that software.

There are two reasons for urgency.

Firstly, you will not have time later. As soon as your project is underway, data will build up, and if you are still unable to use your software’s tools, learning them will distract you, while delaying learning them will mean some data records are handled manually, some with software, and the project is inconsistent from the start.

Secondly, you need the software now. Your software will provide the container for your data and ideas, and the tools for exploring the relationships between data and ideas. From the first ideas, and the first data, you should be able to handle storage and management deftly with software. If you have followed the advice in this chapter, you will have very many project documents already: research design proposals, discussion documents, reflections on the scope of the project and, importantly, literature reviews. These are all qualitative data – complex, contextual material which you need to explore and understand throughout the project. The software can assist you in handling them, and if they are handled in the same project as your data records, you will constantly be reminded of those contexts.

So choose and learn to use the software now.
How do you choose and learn software?

Go online! The paper literature on computing is necessarily out of date before publication. To find the current packages available, and try them out, go to the website for this book: www.sagepub.co.uk/richards. Follow the links to current discussions of the range of packages and to the sites for particular packages and their tutorials.

Choosing software

Go to the ‘Qualitative Software’ section of this book’s website for advice and links to sites offering current descriptions of the packages available. If your project or your institution already has a package, this may preempt the choice, but take time to compare it with others discussed. If you are free to choose your software, carefully set out what you want from a package, and review those available to you within your resources. A next step is to seek out colleagues who have used the software product you are considering and spend time watching how they work with it.

Now to find direct reports of what it is like to work with the software package you are considering! In the ‘Methods in Practice’ section, compare the reports from the projects using different software products. Five reports offer detailed accounts of working in three packages: Atlashi (Sexuality-Spirituality Project); MaxQDA (Wedding Work Project); and QSR NVivo (REMS project, Youth Offender Program Evaluation and Harassment Complaints project).

Using the software – the best way of learning

Researchers differ in the ways they best learn software. For many, self-teaching is best, but it requires informed materials. On the software section of www.sagepub.co.uk/richards you’ll find links to tutorials in some of the most used products. Others are helped by seeing someone competently using the software tools; if this is your preference, find a workshop or a consultant near you. Direct learning with an expert may save you months of trial and error.

If you are working in a team, it is highly desirable to have training as a group. Look for a consultant who will come to your site to train you together, responding to the different needs of group members and advising on group processes.

All members of the team must attain competence in the software. A recipe for disaster is the team whose principal investigator (PI) sends a junior assistant off to learn the software and make the project, while the PI and other senior colleagues direct the design and data handling. The assistant is likely to leave; the PI will never trust how the interpretations are stored or be able to contribute directly to them (or even access them!). As the project takes shape, it is effectively conducted and reported by the assistant (so long as they have not left). This is not a team.
Getting started in software

If you are to use software as you work through this book, start now.

With what? The tasks of setting up, outlined in this chapter, all produce material you can handle with software. They should all be stored in the qualitative computer program to handle all aspects of your research.

All qualitative software programs, in one way or another, help you set up a container for your project. In this you can store the documents and other data you gather, and the ideas and thoughts and categories of analysis that you produce during analysis.

All the tasks in this chapter will create documents and ideas that you want to retain and revisit. These can begin your project.

Setting up data documents

Documents already discussed include:

- the research design;
- the logs of your discussions of design issues;
- the proposed stages of entry into the field and observations there;
- notes from books and documents that are building to a literature review.

Each of these can (and should) be stored in your software project, safely and with appropriate comments, where data from your observations or interviews or documents will later, also be stored.

A useful first document in your software project is a log trail document. You can return to it to note logging events from time to time and, since it is on the computer, you can link it to other documents and memos. Whenever you create memos about 'loggable' matters, you can put hyperlinks to them in the log trail document (see Chapter 4 about memos and links). In this way, you can maintain a trail of important events through your entire project, no matter how you recorded them, how big the project is, or how long it goes on for.

Each of these documents can be created or imported into your new project.

Now consider all the ideas, concepts and questions that you are taking into the project, and ways of storing those alongside the document. Note that to do so does not require that they remain significant, and certainly does not predetermine the ideas you will discover in the data to come. The following are sources of categories, things you are going to think about, identified in the setting-up process. Software packages have different terms for the places these
categories are stored, but all will store them, ready for you to code there all the data about those categories (see Chapter 5).

Setting up categories for thinking about the data

- If the literature, or experience, indicates that certain issues or processes or factors will be significant in this project, make categories for them, with appropriate commentary.
- If you are asking a series of prepared questions (whether or not these are to be asked in structured format), they should be noted (and if they change later, this too needs recording).
- If your entry into the field has identified places, people, roles or tasks that you want to gather material about, put these into the project.

As new data are recorded, and new ideas emerge, the project will grow, storing your work safely and supporting your exploration of the relationship between your data and ideas.

You've started!

To do

Getting started requires many steps, and these may of course be taken separately over some time. But each of these three major tasks is required for you to move on.

1. The ten projects on the website offer a wide range of research methods selected by the researcher as appropriate to the question being asked. For each project there is a page on setting up. Read one project’s story and consider how it would have progressed had a different method been chosen.

2. Design the project, following the steps from pp. 14–22:
 (a) What are your purpose, your goal and your intended outcome?
 (b) What is your researchable question? Follow, and document, the steps:
 - What is your broad research area?
 - Within that area, what is your topic?
 - And within that topic, what is the question being asked?
 - What researchable question could you attempt to answer – given your resources and skills?
 - How does it contribute, fill a gap or address a problem?
 (c) How are you asking it?
• Are there several ways it could have been asked?
• Which have you chosen and why?

(d) What data will you need to provide a good answer?
• What is the scope of this project?
• What is the nature of the data required? What sorts of data are needed?

3. Declare the ideas you are taking in, in a three-part report containing the following:
• a very brief summary of the usable ideas and explanations you found in the literature on your topic area;
• a very honest account of the values and expectations you are personally taking into your project – ‘Me and my topic’;
• a model of what you expect to be finding.

4. Evaluating software:

Go to the ‘Qualitative Software’ section on the website and choose two projects which used different software. Can you see differences in the project reports that might be explained by the choice of software package?

5. Starting in software:
• Become familiar with the software to be used, via self-teaching tutorials or a class or workshop.
• In that software package, set up a starter project with the documents and ideas created in the exercises above.

Suggestions for further reading

For issues of methodological fit, a sketch map of the choices of methodologies and detail on research design, see Readme First (Richards and Morse, 2007) Part 1. If your work is not already located within the literature of a method, and even if you think this is not necessary in your context, go there for understanding of the range of methods available and how you can design your project so question, data and methods fit, and for literature specific to a method.

On qualitative research design, there are several focused texts (see especially Creswell, 1998; Maxwell, 1996; Marshall and Rossman, 1999) and most of the general texts and collections have chapters (for example, Flick, 1998; Lincoln and Guba, 1985; Mason, 2002). Seek reading on design in your discipline or research area, as the criteria for good design vary: for example, in nursing, Morse (1994), in evaluation, Patton (1997), in education, Le Compte et al. (1992). For specific advice on research design for using qualitative software, see Bazeley (2007) and Di Gregorio and Davidson (2009).