LEARNING OBJECTIVES:

After reaching this chapter you will be asked to:

- To gain insights into the factors that affect the relative success of doing research.
- To appreciate the need for a research focus from the outset of any research.
- To consider a number of issues that will assist in getting the research started.
INTRODUCTION

There is no simple way of ensuring that research will be successful. The types and contexts of research vary so widely that ‘ideal’ strategies will differ from situation to situation. Moreover, it is often difficult to chart the ideal course of any investigation in advance with precise certainty. Nevertheless there are a number of factors that seem to increase the chances of research being successful – all things being equal. Four such factors are discussed in this chapter: motivation; support; style and creativity; and personal qualities. The chapter concludes with some thoughts about one of the biggest problems of all: getting started.

MOTIVATION

Phillips and Pugh offer seven pieces of advice on how not to get a PhD, the first one being, ‘not to want a PhD’ (2005: 29). We can, of course, express the point in a more positive way by saying that much determination and single-mindedness are essential to completing any significant piece of research. There is so much uncertainty about the processes and outcomes of any research project, with the work invariably expanding beyond anything considered reasonable at the outset, that it is not an activity for the faint-hearted. Here we distinguish between three apparent motives for (management) researchers: as a vehicle for learning; as a basis for personal growth and advancement; and as a means of enhancing managerial skills.

It is now very common for management courses, particularly if they lead to qualifications, to contain an element of research. Many taught courses use a research project or dissertation as a kind of ‘capstone’, as a way of integrating the different functional disciplines such as accounting and marketing which are often taught separately in business schools. Projects are also a popular way of enabling students to learn from direct engagement with the outside world. They can provide them with greater confidence in their own opinions as well as an opportunity to test out the validity of the theories offered by the text books.

Students react differently to research projects. Some will treat them instrumentally, as a way of achieving a pass on the course; some may use them to obtain contacts, experience and credibility which will help with job-hunting; yet others find themselves getting absorbed by their projects and excited at the novel possibility of studying something in depth.

This links to the second main source of motivation, personal growth and career development. There are many possibilities here. People may register for research degrees because they want to be given an external discipline for examining something in which they have long held a passionate interest. Perhaps they want to prove to themselves that they can do research, or they may simply want to belong to a research ‘community’ for a few years. For those wishing to develop careers as academics a research ‘identity’ is essential. This means that a consistent thread to an individual’s research interests is sought when assessing candidates for academic appointments, and it is easiest to achieve this consistency when one is driven by strong personal interest. With the growth in interest in faculty with strong research credentials in
most business schools, gaining a PhD which indicates that the person is a fully trained researcher, very much become a *sine qua non* for anyone who is intent on an academic career.

The third source of motivation comes from a recognition that research experiences may lead to the *enhancement of managerial skills* and the solution of problems at work. As we suggested in the first chapter, research may help to develop the skills of judging what information is important, how and when to obtain it, and how best to communicate results. It is also likely to strengthen independence, because of the lack of prior rules, and the need to initiate structure and monitor progress on one’s own for most of the time. But most of all it develops an individual’s critical facilities in relation to judging the quality of evidence used to support particular courses of action. These skills are likely to become more important for managers as the business environment becomes more complex and unpredictable. Over recent years the professional doctorate (usually a DBA within the management and business field) has become a vehicle for doing this (see Chapter 6).

As this section has shown, there are different reasons for doing research. It can be viewed as a vehicle for learning, as a basis for personal growth and advancement, or as a means of enhancing managerial skills. Some people may well have all three of the above reasons for doing research. Whatever the prime reason for opting for a research career may be, at the very least it helps if one has a combination of ‘internal’ and ‘external’ pressures, such as a strong interest in a particular topic and clear expectations and deadlines from a sponsor, or one’s family. And when embarking on research, especially where it involves a long term commitment, it is worth considering one’s motives carefully.

SUPPORT AND SUPERVISION

Research work can be very demanding on the individual. There are many uncertainties, doubts and crises that enter into research projects. From her interviews with students, Phillips (1984) identified seven main stages in the process of conducting a PhD. These were: enthusiasm; isolation; increased interest; increasing independence; boredom; frustration; and a job to be finished. Not every research project necessarily goes through precisely the same seven stages, but ups and downs are inevitable. The emotional cost of these crises can be quite high, and hence it is important to consider the support, both technical and emotional, that can be obtained.

When the research is part of an academic degree the most obvious source of support is the supervisor or tutor. However, the quality and different styles of supervision may vary considerably. The following points are based on a combination of our, and others’, experiences about the behaviour of supervisors who seem most successful at the task of supervising doctoral degrees. These points might be taken into account by those who are able to influence their choice of supervisor. First, he or she must possess some technical expertise, although some would argue that a general knowledge of the research area and of relevant methodologies is perhaps more useful than a very deep knowledge of the subject to be investigated. As the field of management develops, however, specialist knowledge of debates and recent literature in the chosen area is increasingly important. Moreover, the supervisor who is personally
active as a researcher is also likely to belong to the international networks that control the leading journals and conferences. These networks provide a source of external examiners for doctoral candidates and also act as gateways into academic careers. With regard to the practical aspects of the relationship, Phillips (1984) found that the better supervisors tend to set regular, and realistic, deadlines, although they do not interfere too much with the detail of the work. A ‘responsive’ style seems most appropriate if the researcher is to be encouraged to become autonomous and independent. It also helps if the supervisor is prepared and willing to respond quite rapidly to any problems or to written work. Ideally the supervisor should be prepared to ‘turn round’ draft chapters and reviews within a week or two, despite the growing pressures on academics. Availability is very important, and for this reason the guru with a string of brilliant publications but who is never available for consultations, may not necessarily be the best supervisor.

The relationship between supervisor and student is also important because it must be strong enough to cope with the different stages of the research process (Deem and Brehony, 1997). Ideally there should be mutual commitment between the two parties, and this should, if possible, result from the initial choice and negotiation process. It should also be recognized that the role of the supervisor can be difficult at times. A very eminent colleague of ours Tom Lupton, who supervised 35 PhDs to completion, had a model for supervisory support that encompassed five phases of the process.

From our own experiences as supervisors there is often a nagging doubt that the advice one is giving may be wrong, and in most cases students will move beyond the existing knowledge of the supervisor during the course of the project. In the case of a doctoral thesis this is almost an inevitable consequence of the requirement for originality in a doctoral thesis. But also in postgraduate and undergraduate dissertations which involve tackling broad-based problems the research is likely to fall outside the specialist area of the supervisor who therefore has to rely on ‘generic’ supervisory skills such as asking challenging questions or pointing the student(s) to alternative sources of expertise. There is, moreover, a delicate balance required between providing feedback, which highlights weakness in a piece of work, and providing praise and encouragement to try harder. The way out of this dilemma is to put across the message: ‘this is fine in the following respects . . . but it could be made even better in these areas . . . and the way I’d go about it is . . .!’

Not everyone is lucky enough to have a supervisor, and even when they do, especially at the beginning of a piece of research when both parties are learning to work together, there are likely to be elements of ambiguity in the relationship. Hence it is always worth considering alternative sources of support. If things do go wrong then all universities have guidelines of what to do in cases such as this and these need to be consulted and followed. One of the best forms of support can come from colleagues, either through naturally occurring friendships, or through constructing a ‘support set’ – a group of four or five researchers committed to meeting regularly every few weeks to discuss their research progress and problems. It helps if the members of this set are working in related fields, but they should not be too close because this can sometimes generate conflict and competition. The set may have a tutor (or set advisor) who can help it to organize itself, and possibly, provide specialist advice and support. The members of the set should be able to use it to ‘bounce’ ideas off
TABLE 2.1 Five stages in the supervisory support process

<table>
<thead>
<tr>
<th>Phases of the process</th>
<th>Main focus of attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Getting started and finding a topic</td>
<td>At this stage Tom considered it essential for there to be a close supervisory relationship. Students need support in searching the field and formalizing their perspectives. Supervisors can help shape the direction of the research by being on hand so that students can test out their ideas.</td>
</tr>
<tr>
<td>2. Finding out what was already known about a topic through a review of the literature and scanning the field</td>
<td>At this point he saw the supervisor’s role as not being quite so intense, rather the supervisor should move into a position of guidance and facilitation.</td>
</tr>
<tr>
<td>3. Out in the field collecting data</td>
<td>During data collection he saw the supervisory responsibility as being on tap, but not on top. Tom considered that it was beneficial for students to make mistakes and perhaps even have an adventure but someone should also be available to help them should any problems arise.</td>
</tr>
<tr>
<td>4. Writing up</td>
<td>At this stage he considered it very important for supervisors to reengage with the research project. In particular, there is a need to check the quality of the work, the writing style and to give constructive (often detailed) feedback.</td>
</tr>
<tr>
<td>5. Preparing for the oral defense</td>
<td>Tom identified that students often need more support in preparing for the oral defense than they realize. They are often so close to their work that they don’t recognize the contributions that they had made and they often need help to stand back and see what they have achieved in perspective.</td>
</tr>
</tbody>
</table>

Source: Adapted from Lupton (1993)

each other and, particularly for those who are researching part-time, to provide contact with others who may be going through similar experiences of doubt, confusion and disillusionment as themselves.

Furthermore, it is important to recognize the potential for support outside one’s immediate institution. Those wishing to develop academic careers will need to develop links within the broader community working in a particular area, and, as we have pointed out above, this should be regarded as a crucial responsibility for the supervisor. Many of the better academic conferences will also organize doctoral days where doctoral students get the chance to present their ideas informally with leading figures in their field. By the second year of a doctoral thesis one should be submitting papers to conferences, possibly in conjunction with the supervisor initially. It is through presenting papers at such conferences that one can develop contacts with other collaborators and potential sponsors. It forms an induction into the academic community which can be both reassuring and motivating for one’s own research.

Those carrying out research as part of taught courses work under different time pressures and may be supervised both by an academic and a client/practitioner. In this
case group supervision may be the norm, as with action learning sets or group-based projects. Though there is an important distinction here in that within an action learning set the members will be looking at different topics, while members of a group project team will be focusing on the same issue. The downside of group projects is, of course, that they now have to work as a team and this provides the added complication of having to work effectively in a group situation. For those planning careers as practitioners it can also be important to attend professional conferences. The opportunities for instant visibility and fame are less, simply because presentation platforms are normally reserved for people who already have established reputations. Nevertheless, such conferences can put one in touch with what are considered to be the hot issues and fashionable ideas, and these may lead to the establishment of personal contacts which have direct career implications. In addition, the rise of the Internet has created considerable networking opportunities for people on a global scale both via public conferences and through private e-mail exchanges.

STYLE AND CREATIVITY

In the previous section we explained why emotional support is a key factor in the successful completion of research work. Here we focus more on ways of ensuring that the research will be of good quality and will contain some originality. We argue that this is determined largely by the personal style and approach adopted by the researcher. In all research there is a need to understand that the success of the research, and the extent to which it will be accepted or not, will relate to the degree to which it is coherent and contains within it a strong argument that is supported by data, whether this be quantitative or qualitative. This means that the researcher has to understand the issue that he wishes to address in his research and that this needs to emerge from the way the research is conducted. There is whole range of ways in which a person’s creative processes can be stimulated so that resulting ideas can be captured and analysed, but we believe that a person’s attitude towards preparing and doing research is crucial.

Style

A fascinating study into the personal factors that contribute to discoveries in medicine is provided by Austin (1978), an American neurosurgeon who had become dissatisfied by the trite explanations provided by scientists about how great discoveries whether in the natural or social sciences, come about. He differentiated between four factors, or forms of ‘chance’, which seem to underlie many discoveries.

- **Chance 1** is simply *blind luck*. Although this may often be important, it is unlikely to be the only reason for a breakthrough. Relying on blind luck can take a long time. Austin reminds us that in bridge if you wait for 13 spades to turn up in a hand of cards, the odds are 635 million to one against.

- **Chance 2** derives from the researcher being *in motion*. Nobody, it has been said, trips over anything while sitting down. The greater the curiosity,
resilience and persistence of the researcher, the more likely he or she is to find something of significance.

- Chance 3 comes from having a *prepared mind* and being ready to see new relationships and solutions. This means being aware of past research that has been conducted through searching the literature and talking to other researchers, while at the same time being prepared to think outside existing frameworks and knowledge.

- Chance 4 is a product of *individualized action*. This means encouraging distinctive, even eccentric, hobbies and lifestyles. In particular, the researcher should try to take a broad interest in people and other disciplines. Creativity is often born from associations and links made across traditional boundaries. There are many examples of scientific research where the above elements of ‘chance’ are demonstrated.

The illustration that Austin uses, is Fleming’s discovery of penicillin in 1928. In an interview after World War II, Fleming commented that the discovery of penicillin was almost entirely a matter of luck: ‘like winning the Irish Sweepstake’. But Austin shows that this was not just a matter of blind luck. Fleming, by all accounts, was a tireless researcher; his great aim being to discover a new antiseptic, and even after the penicillin discovery he was extremely busy making and selling antibacterial vaccines. Thus he was a man who was continuously *in motion*.

It was his *prepared mind* which enabled him to note the effect on colonies of bacteria when a stray spore of a rare mould fell by accident onto his culture dish. Nine years earlier he had discovered the bacterial enzyme Lysozyme when . . . ‘whilst suffering from a cold, his own nasal drippings had found their way into a culture dish. He noted that the bacteria round the mucus were killed and astutely followed up the lead’ (Austin, 1978: 74). The parallels between these, and other experiences would be easy to perceive. *Individualized action* enters into the story because Fleming was a keen swimmer and water polo player. He had chosen to train and work at the old St Mary’s hospital not because of the excellence of its scientific facilities, but because it had a good swimming pool. The laboratories were basic, badly equipped, cold and ‘contaminated by organisms swirling in and out of the London fog’ (Austin, 1978:92). This made them a particularly good breeding ground for bacteria and stray spores! In this example it is possible to see all four forms of chance at work, and Austin suggested that major discoveries are most likely to take place when several forms coincide. This is what he calls the ‘unifying observation’ of the Fleming effect.

Unfortunately not all researchers are destined to make major discoveries. Indeed it is wise to content oneself with, what we call, invention or reflection; discovery is but a bonus, which may be made more likely if one follows Austin’s prescriptions. The bulk of research is much more humdrum. This is true both for the social and natural sciences. Many sociologists have carried out detailed studies of the way in which the natural sciences progress, and the consensus is that it is a gradual process, with much hard graft and very few genuine breakthroughs. Latour and Woolgar (1979) demonstrated in a classic study of a biological laboratory how scientific ‘facts’ emerged through a process of debate which was linked to the career strategies and progress of individual researchers. More recently, the study by Law (1994) into the management and organization of a particle physics research laboratory shows the
impact of factors such as funding, politics and status hierarchies on the way scientific knowledge is produced and recognized. He also commented self-reflexively on his debates with colleagues and various changes of heart in the course of doing his own research study. These issues will be considered in more depth in Chapters 4 and 5.

Disciplined imagination

Building on some of the abovementioned ideas on how to stimulate creativity which may lead to conceptual breakthroughs, Karl Weick, a well-known organization theorist, views the way in which a researcher forms ideas about a subject as a process of disciplined imagination. When a researcher thinks about a subject or problem, he or she imagines various ways of viewing and operationalizing the subject (the ‘imagination’ element) before making a decision on one or a range of perspectives (the ‘discipline’ element) that are adopted and elaborated on in the research. Weick likened this process to artificial selection as “theorists are both the source of variation and the source of selection” when they imagine and select theoretical perspectives and ideas in relation to a particular subject or problem (Weick, 2001: 520). Weick also suggested that ‘disciplined imagination’ is characterized by simultaneous rather than sequential thinking and revolves around three components: problem statements, thought trials and selection criteria. These components represent reference points in the process where researchers can act differently and produce theories of better quality. As Weick remarks; (… theory construction can be modified at the step where the problem is stated (make assumptions more explicit, make representation more accurate, make representation more detailed), at the step where thought trials are formulated (increase number of trials generated, increase heterogeneity of trials generated), and at the step where criteria select among thought trials (apply criteria more consistently, apply more criteria simultaneously, apply more diverse criteria)” (2001: 529).

The important implication of Weick’s notion of ‘disciplined imagination’ is that it suggests that researchers engage in a number of mental experiments or thought trials where they iterate between reviewed literature, preliminary analyses, background assumptions and their own intuition to consider a variety of metaphors, ideas and models as representations of the subject or problem in hand (‘imagination’) before selecting and deciding upon one metaphorical image that serves as a starting point for a further inquiry into it (‘discipline’). Research in this sense includes a combination of both deductive reasoning, based upon a reading of the available literature on the topic, and inductive reasoning through intuitive and creative thinking, rather than a focus on either one (Weick, 1989). Another implication of Weick’s thinking is that it suggests an active role for researchers who imagine or construe theoretical representations, rather than seeing such theoretical representations as deductively or naturally following from a literature review. ‘Disciplined imagination’ is rooted in the view that the ‘logic’ of research and the process of theory construction is creative and psychological. It is a matter of heuristics and associative thinking. In Weick’s words, research and theorizing is therefore more like artificial selection than natural selection as “the theorist rather than nature intentionally guides the evolutionary process” of selecting new ideas and theoretical representations (1989: 519).
Conceptualization

A last thing to keep in mind, is that the fact that all researchers imagine and construe theoretical representations in their own way, is likely to mean that different researchers come up with different theoretical representations even though the general topic of the research may be the same. One’s educational and cultural background, as well as previous research experiences, all affect the way in which a researcher views a research topic conceptually.

An example of someone who has gone through a process of conceptualisation their research topic is offered by a doctoral student at Cardiff Business School in Example 2.1, Joanne’s story.

Having a conceptual model is not meant to restrict the student, merely to guide and align their thinking into more productive channels. The student from the example above says that she found many new and different avenues to follow in her research, but it did help to have a guiding model that kept the project focused.

Three further characteristics of good research, whether it be grand or humble, and which distinguish it from activities such as decision-making or consultancy, are identified by Phillips and Pugh (2005). First, good research is based on an open system of thought. This requires continual testing, review and criticism of others’ ideas, and willingness to hazard new ideas, even if one can’t find half a dozen references to support one’s view. Second, one must always be prepared to examine data critically, and to request the evidence behind conclusions drawn by others. Third, one should always try to generalize the research, but within stated limits. This means attempting to extract understanding from one situation and to apply it to as many other situations as possible.

The first two of these characteristics may require researchers to be aware of their own preconceived views, or to be self-reflexive, as Law (1994) describes it, and to be willing to look for information that will disconfirm what they already believe to be the case. This willingness to have current beliefs disproved is important if new ideas are to be developed, and it also has a strong philosophical justification. The requirement for generalization may be either descriptive, where one wishes to demonstrate that the characteristics of one setting are similar to those in other settings, or it can be theoretical, where one demonstrates that the ideas developed within one context are relevant and useful in very different contexts. These issues are developed further in Chapter 5.

SKILLS AND QUALITIES

The qualities that are needed to make a good researcher are not easy to define. Turner (1988) compares the researcher to an expert cook, who finds it difficult to explain what he does but claims that the end result is evidence of his proficiency. There are many tacit skills involved in research. Although it is possible to develop formal skills and knowledge through training, these tacit skills can only be fully acquired through experience, and this necessarily implies working with others who are able to pass on the tacit skills that they have previously acquired. This is where the relationship with the supervisor is very important, and if one gets the chance to work on a project with experienced researchers, this can be very valuable.
EXAMPLE 2.1
A PhD student reflects on conceptualization

When I initially embarked on the PhD program I thought that I was quite fortunate, already having an idea of what subject area I wanted to explore ‘the family in business’. This feeling of security quickly changed to a state of anxiety when I was told by my supervisor that I would have to have some kind of ‘conceptual model’ to frame my research. Despite initially trying to hope this requirement would disappear I eventually came to accept that I have to have a basis from which to work and as a consequence I would need to have to look for a ‘model’ which justified my chosen approach. My salvation was my supervisor who proposed I use his model on networking and ‘systems of exchange’. It took some time for me to see how this model would fit with my area research – family business – while making a contribution to organization theory, but, after reading more of the of literature, connections began to emerge between these two aspects which I incorporated into the conceptual schema. Social capital literature made a good bridge and other links became apparent and began to fall into place. It was the identification of the linkages that led to the building of the conceptual model below. This was aided by the fact that I was able to use my masters as a pilot study for the PhD, and this really helped me get a sense of how I could apply the features of the model. It also highlighted to me elements that could be included in the model that currently were not, such as trust and the differing orientations to action of the different actors in a relationship. The diagram below represents my thinking of ‘if that, plus that, are taken into account that, then maybe we may end up with a model looking something like that…’. This has meant that the initial conceptual development is something like a hypothesis or research question with which will serve to guide my research and help me stay focused.
In this section we have listed what we believe to be the important qualities of researchers. These are based partly on our own experiences and partly on external sources such as the ESRC Guidelines for Management Research Training (ESRC, 2001). The resulting personal qualities we have classified according to whether they comprise knowledge, skills or personal attributes. This classification is based substantially on Burgoyne and Stuart’s (1976) work into the attributes of effective managers, and it is here that we think the greatest transferability lies between managing and researching. The skills and knowledge areas are progressively more specific to the conduct of research. These are ‘core’ qualities, which are important in any form of research, and are listed in Exercise 2.1

Rating skills and qualities

Rate yourself on each quality using the following 1–4 scale:

1. Have virtually none of these
2. Possess to a limited extent
3. Possess to a moderate degree
4. Possess to a high degree

<table>
<thead>
<tr>
<th>Knowledge/ awareness of</th>
<th>Skills and abilities</th>
<th>Personal qualities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Different assumptions about the world</td>
<td>7. Planning, organizing and managing one’s own time</td>
<td>13. Self Awareness</td>
</tr>
<tr>
<td>2. Qualitative and quantitative research methods</td>
<td>8. Searching libraries and on-line data sources</td>
<td>14. Clarity of though</td>
</tr>
<tr>
<td>3. Range of research designs</td>
<td>9. Interviewing and observation</td>
<td>15. Sensitivity to events and feelings</td>
</tr>
<tr>
<td>4. Immediate subject of study</td>
<td>10. Structuring and arguing a case in writing</td>
<td>16. Emotional resilience</td>
</tr>
<tr>
<td>5. Related subjects and disciplines</td>
<td>11. Defending and arguing views orally</td>
<td>17. Creativity</td>
</tr>
<tr>
<td>6. Key networks and contacts in chosen research area</td>
<td>12. Gaining support and cooperation from others</td>
<td>18. Learning from experience</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>
If you have managed to rate yourself on the qualities in Exercise 2.1, then any ratings below three may be cause for concern (with the possible exception of item 5). What to do about any apparent deficiencies is, of course, a different matter. As a generalization: ‘knowledge’ can be acquired by reading and talking, or by attending courses; ‘skills’ can be acquired through practicing them, either in a simulated or a real environment; and ‘personal qualities’ can be acquired, with much difficulty, through life or educational experiences. This book certainly cannot offer everything. It provides a reasonable coverage of items 1, 2, 3, 8, 9 and 10; and it touches on 6, 7, 12, 13 and 18. As for the rest, they may be acquired most easily by working with other researchers, in the form of apprenticeship suggested by Turner (1988).

Beyond a certain point, however, specialization begins to creep in. One form of specialization depends upon whether the researcher is following a primarily quantitative or qualitative path. Thus if someone is carrying out analytic research into financial markets, they may not need to use any qualitative data in their research, and training in qualitative methods may seem a great irrelevance. But we still feel that it is important that they are able to appreciate and evaluate the quality of qualitative data and the inferences made from them by others, because it could still have some bearing on their own research. In addition, there is a trend towards more mixing of subjects and methodologies as will be explained further in later chapters. Thus quantitative subjects may be tackled with qualitative methods, as in behavioural accounting; and qualitative subjects can be tackled with quantitative methods, such as frequency counts in textual analysis.

Researchers need to be skilled in the use of different methods for such things as seeking information, analysing data and presenting research results. Those following the quantitative path will need to have high levels of skill in areas such as survey design, sampling methods and statistical analysis; those following the qualitative path may need to be skilled at conducting ‘in-depth’ interviews, making field notes, coding and interpreting transcripts, and so on. In Chapters 7–11, we give extensive guidance on the choice and application of qualitative methods, and provide a review of possible quantitative methods.

GETTING STARTED

It is very rare for students to have a clear focus at the outset of their research, and yet many find the lack of a clear focus is a major impediment to getting started. It often takes doctoral research students a whole year to find an acceptable focus, and this may include false starts, drifting, and moments of despondency and elation. Indeed, the whole research project may be seen as a continuous process of focusing and refocusing.

Whatever one’s situation, it is worth getting started as quickly as possible. This means defining a provisional area of interest, reviewing relevant literature and gathering some data relevant to the focus. One way of thinking about a topic is to produce a model or mind map of the issues involved (see also Chapter 12). An example of such a scheme developed in relation to a project by Easterby-Smith on international organizational learning is shown in Figure 2.1.

In a postgraduate project time is short and one may then need to launch directly into the main study. In a doctoral project there is usually time to carry out a pilot investigation to test methodologies and to assess the feasibility of initial ideas, which might then lead into a larger study, or be completely jettisoned at a later stage.
Even if data and reading subsequently needs to be discarded it does not necessarily mean that time has been wasted. There are most likely to be indirect benefits in terms of the contacts, ideas, or techniques one encounters on the way, and at the very least one is invoking Austin’s (1978) second principle of being ‘in motion’ (see page 7 of this chapter). Once possible topics have been identified it might be worth considering them against four criteria defined by Huczynski (1996) for why certain management ideas and theories come to become successful and gain popularity at the expense of equally well researched and valid alternatives:

1. It must be **timely** and address a problem that is seen as important at that moment.
2. It has to be **promoted** effectively via academics, consultants and the business media.
3. It must **relate** to the needs and concerns of the managers to whom it is addressed.
4. It must be **presented** in an engaging way.

Sooner or later it is worth writing a research proposal that summarizes what the project is about and how it is to be investigated. Most institutions require a proposal from prospective research candidates before registration, they also require a more
extensive proposal after 12–15 months if a decision is required about upgrading registration from MPhil to PhD levels. Research councils require detailed (but concise!) proposals before they will allocate money to major research projects; shorter proposals may also be required at the beginning of postgraduate projects. Even if there is no formal external requirement to produce a proposal, the exercise of producing one is a very good discipline for drawing together half-formed ideas in the early stages of research.

The main items that should go into a research proposal are as follows:

1. A statement of the focus of the research and the main questions to be investigated. It is useful here to produce a series of between four or five aims that the research will address. These can be quite short but should be real aims in the sense that each has an outcome. For example:
 - Conduct a literature review in the fields of knowledge management, management learning and small business development.
 - Conduct research in a sample of firms in the north west of England in the manufacturing sector to understand the way in which owner managers acquire knowledge to tackle significant business related problems.
 - Locate the findings of the study within the literatures of knowledge management and management learning.
 - Draw lessons for business support agencies so that they can provide more appropriate assistance.

2. An explanation of how it relates to, builds on, or differs from previous work in that field, and hence how it will constitute a ‘contribution’ (see Chapters 3, 5 and 12). This part of the proposal is essentially the part where gaps can be identified in the literature or contractions in explanations highlighted. Even though this section is generally relatively short the length often belies the considerable amount of reading that is required, in order to make confident statements of the current state of a particular field. The references used in this section need to be from research sources rather than textbooks and as up-to-date as possible.

3. A summary of the research design including a description of what and how data will be collected (see Chapter 5 for more details).

4. An explanation of how data will be interpreted and how this will relate back to the initial questions posed (see Chapters 8, 10 and 11 for more details).

5. Comments on the practical value of the research, and any problems that may be encountered in its conduct.

Our view is that the document should not normally exceed 2500 words although the amount of detail required will depend on the scale of the project and the time available. Likewise the emphasis and structure of the proposal will vary according to such things as the intended audience, the style of research and the methods to be used – and we extend the discussion further in Chapter 5 when discussing research designs. As we suggested at the beginning of this chapter, there is no single formula for ensuring that research will be successful. One must always exercise judgment according to the particular circumstances that prevail. The rest of this book will explain many of the factors that shape and constrain research, and thus to assist the researcher in making informed choices as he or she progresses.
CONCLUSION

In this chapter, we have discussed the different elements that contribute to the (relative) success of a research project. The key points/lessons that we have wanted to emphasize in this chapter are:

- The need to negotiate and maintain adequate support.
- Self awareness including your own drivers and motives for doing research.
- Having patience/confidence that you’ll find your own unique angle.
- Being willing to keep searching although being aware it may not come easily.

A research project can only be a success if it is sufficiently embedded in existing literature and knowledge on the subject. This can be achieved by doing a complete and coherent literature review. The next chapter will go into the way in which researchers can find important data and write a comprehensive literature review.

Problems with supervision

Find out the procedures you have to follow in your institution if you are having difficulties with your supervisor. This information should be easily accessible on your institution’s intranet. Remember supervisory problems are matters of serious concern and should be dealt with as soon as possible to avoid the situation escalating.

Motivations for conducting research

In small groups, discuss your own motivations for undertaking your research. Take into account the support you have, both emotional and financial at your disposal. How did this support impact on your decision to undertake a research degree?

Mapping different the perspectives on your research question

In pairs set out in diagrammatic form the various approaches that different disciplines or fields have taken to explain the issue related to your research. Argue for the approach you are taking and how it will lead to new understandings.
FURTHER READING

Rugg, G. and Petre, M. (2004) The Unwritten Rules of PhD Research. Maidenhead: Open University Press. This book aims to give an insight into the day-to-day life of a PhD student and aims to highlight the “unwritten rules” of research and academic writing. It will be useful both for students considering doing a PhD and those already engaged in doctoral research.

Weick, K. E (2001) ‘Theory construction as disciplined imagination’, Academy of management Review, 14 (4): 516–31. This is a highly innovative and interesting paper relevant for students who aim to construct new theory from their research. Weick proposes imagination in an attempt to free theorists’ thinking from restrictive ideas and develop new understandings.