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LEARNING  
UNIT  

9

t Tests: One-Sample, Two-
Independent-Sample, and 
Related-Samples Designs

Excel Toolbox

Mathematical operators

• +

• -

• ( )

• *

• /

• ^2 [square]

• ^.5 [square root]

Functions

• AVERAGE

• COUNT

• STDEV.S

• SUM

• VAR.S

• T.TEST
(Continued)
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128  Section IV • Comparing Means: Significance Testing, Effect Size, and Confidence Intervals 

Other tools

• format cells

• freeze panes

• fill down or paste

• inserting equations

• Analysis ToolPak

In this Learning Unit, we explore the nature of hypothesis testing when one group 
or two groups are observed; for two groups we explore situations in which the same 

or different participants are observed in each group. We further explore the informa-
tiveness of hypothesis testing for making decisions, and explore other ways of adding 
information about the nature of observed effects and how to appropriately interpret 
them. We do this with three different versions of a t test:

� one-sample t test,

� independent-sample t test, and

� related-samples t test.

Origins of the t Tests
An alternative to the z statistic was proposed by William Sealy Gosset (Student, 
1908), a scientist working with the Guinness brewing company to improve brew-
ing processes in the early 1900s. Because Guinness prohibited its employees from 
publishing “trade secrets,” Gosset obtained approval to publish his work only under 
the condition that he used a pseudonym (“Student”). He proposed substituting the 
sample variance for the population variance in the formula for standard error. When 
this substitution is made, the formula for error is called the estimated standard 
error (sM):

Estimated standard error:
2

s
s
n

SD

n
M = =

The substitution is possible because, as explained in learning units 2 and 7, the sample 
variance is an unbiased estimator of the population variance: On average, the sample 
variance equals the population variance. Using this substitution, an alternative test 
statistic can be introduced for one sample when the population variance is unknown. 
The formula, known as a t statistic, is as follows for one sample:

The estimated 
standard error is 
an estimate of the 
standard deviation 
of a sampling 
distribution of 
sample means 
selected from a 
population with an 
unknown variance. 
It is an estimate 
of the standard 
error, or standard 
distance that 
sample means 
can be expected 
to deviate from 
the value of the 
population mean 
stated in the null 
hypothesis.

The t statistic,  
known as t 
observed or t 
obtained, is an 
inferential statistic 
used to determine 
the number of 
standard deviations 
in a t distribution 
that a sample mean 
deviates from the 
mean value or 
mean difference 
stated in the null 
hypothesis.

(Continued)
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Learning Unit 9   • t Tests: One-Sample, Two-Independent-Sample, and Related-Samples Designs  129

t
M m SD

nM
Msobt s

,where=
−

=

Gosset showed that substituting the sample variance for the population variance led 
to a new sampling distribution known as the t distribution, which is also known as 
Student’s t, referring to the pseudonym Gosset used when publishing his work. In 
Figure 9.1, you can see how similar the t distribution is to the normal distribution. The 
difference is that the t distribution has greater variability in the tails, because the sam-
ple variance is not always equal to the population variance. Sometimes the estimate 
for variance is too large; sometimes the estimate is too small. This leads to a larger 
probability of obtaining sample means farther from the population mean. Otherwise, 
the t distribution shares all the same characteristics of the normal distribution: It is 
symmetrical and asymptotic, and its mean, median, and mode are all located at the 
center of the distribution.

The Degrees of Freedom
The t distribution is associated with degrees of freedom (df ). In Learning  
Unit 2, we identified that the degrees of freedom for sample variance equal n − 1. 
Because the estimate of standard error for the t distribution is computed using the 

FIGURE 9.1 ● A normal distribution and two t distributions.

The tails of a t distribution are thicker, which reflects
the greater variability in values resulting from not 

knowing the population variance. 

0

Normal distribution 
t distribution df = 20
t distribution df = 5

Notice that the normal distribution has less variability in the tails; otherwise, these distributions share the 
same characteristics.

Source: www.unl.edu

The t distribution, 
or Student’s t, is 
a normal-like 
distribution with 
greater variability 
in the tails than a 
normal distribution, 
because the 
sample variance is 
substituted for the 
population variance 
to estimate the 
standard error in 
this distribution.

The degrees of 
freedom (df) for 
a t distribution 
are equal to 
the degrees of 
freedom for sample 
variance for a given 
sample: n - 1. Each 
t distribution is 
associated with 
specified degrees of 
freedom; as sample 
size increases, the 
degrees of freedom 
also increase.
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130  Section IV • Comparing Means: Significance Testing, Effect Size, and Confidence Intervals 

sample variance, the degrees of freedom for the t distribution are also n − 1. The t dis-
tribution is a sampling distribution in which the estimated standard error is computed 
using the sample variance in the formula. As sample size increases, the sample vari-
ance more closely approximates the population variance. The result is that there is less 

variability in the tails as sample size increases. So the 
shape of the t distribution changes (the tails approach 
the x-axis faster) as the sample size is increased. Each 
changing t distribution is thus associated with the same 
degrees of freedom as for sample variance: df = n − 1.

To locate probabilities and critical values in a t distri-
bution, we use a t table, such as Table 9.1, which repro-
duces part of Table C.2 in Appendix C. In the t table, 
there are six columns of values listing alpha levels for 

one-tailed tests (top heading) and two-tailed tests (lower heading). The rows show the 
degrees of freedom (df ) for a t distribution.

To use this table, you need to know the sample size (n), the alpha level (α), and the 
location of the rejection region (in one or both tails). For example, if we select a sample 

Appendix A12

See Appendix A12, p. 298, for 
more on degrees of freedom for 
parametric tests.

TABLE 9.1 ● A portion of the t table adapted from Table C.2 in Appendix C.

df

Proportion in One Tail

.25 .10 .05 .025 .01 .005

Proportion in Two Tails Combined

.50 .20 .10 .05 .02 .01

 1 1.000 3.078 6.314 12.706 31.821 63.657

 2 0.816 1.886 2.920 4.303 6.965  9.925

 3 0.765 1.638 2.353 3.182 4.541  5.841

 4 0.741 1.533 2.132 2.776 3.747  4.604

 5 0.727 1.476 2.015 2.571 3.365  4.032

 6 0.718 1.440 1.943 2.447 3.143  3.707

 7 0.711 1.415 1.895 2.365 2.998  3.499

 8 0.706 1.397 1.860 2.306 2.896  3.355

 9 0.703 1.383 1.833 2.282 2.821  3.250

10 0.700 1.372 1.812 2.228 2.764  3.169

Source: Table III in Fisher, R. A., & Yates, F. (1974). Statistical tables for biological, agricultural and medical 
research (6th ed). London, England: Longman Group Ltd. (previously published by Oliver and Boyd Ltd., 
Edinburgh). Adapted and reprinted with permission of Addison Wesley Longman.
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Learning Unit 9   • t Tests: One-Sample, Two-Independent-Sample, and Related-Samples Designs  131

of 11 students, then n = 11, and df = 10 (n − 1 = 10). To find the t distribution with 10 
degrees of freedom, we look for 10 listed in the rows. The critical values for this distri-
bution at a .05 level of significance appear in the column with that probability listed: 
For a one-tailed test, the critical value is 1.812 for an upper-tail critical test and −1.812 
for a lower-tail critical test. For a two-tailed test, the critical values are ±2.228. Each 
critical value identifies the cutoff for the rejection region, beyond which the decision 
will be to reject the null hypothesis for a hypothesis test.

Keep in mind that a t distribution is an estimate of a normal distribution. The 
larger the sample size, the more closely a t distribution estimates a normal distribu-
tion. When the sample size is so large that it equals the population size, we describe 
the sample size as infinite. In this case, the t distribution is a normal distribution. You 
can see this in the t table in Appendix C. The critical values at a .05 level of signifi-
cance are ±1.96 for a two-tailed t test with infinite (∞) degrees of freedom and 1.645 
(upper-tail critical) or −1.645 (lower-tail critical) for a one-tailed test. These are the 
same critical values listed in the unit normal table at a .05 level of significance. In 
terms of the null hypothesis, in a small sample, there is a greater probability of obtain-
ing sample means that are farther from the value stated in the null hypothesis. As 
sample size increases, obtaining sample means that are farther from the value stated 
in the null hypothesis becomes less likely. The result is that critical values get smaller 
as sample size increases.

Computing the One-Sample t Test
In this section, we compute the one-sample t test, which is used to compare a 
mean value measured in a sample to a known value in the population. Specifically, 
this test is used to test hypotheses concerning a single group mean selected from a 
population with an unknown variance. To compute the one-sample t test, we make 
three assumptions:

1. Normality. We assume that data in the population being sampled are normally 
distributed. This assumption is particularly important for small samples. In 
larger samples (n > 30), the standard error is smaller, and this assumption 
becomes less critical as a result.

2. Random sampling. We assume that the data we measure were obtained from a 
sample that was selected using a random sampling procedure. It is considered 
inappropriate to conduct hypothesis tests with nonrandom samples.

3. Independence. We assume that each outcome or observation is independent, 
meaning that one outcome does not influence another. Specifically, outcomes 
are independent when the probability of one outcome has no effect on the 
probability of another outcome. Using random sampling usually satisfies this 
assumption.

Keep in mind that satisfying the assumptions for the t test is critically important. 
That said, for each example in this book, the data are intentionally constructed such 
that the assumptions for conducting the tests have been met. In Example 9.1 we 

The one-sample t 
test is a statistical 
procedure used to 
compare a mean 
value measured 
in a sample to a 
known value in the 
population. It is 
specifically used 
to test hypotheses 
concerning the 
mean in a single 
population with an 
unknown variance.
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132  Section IV • Comparing Means: Significance Testing, Effect Size, and Confidence Intervals 

follow the four steps to hypothesis testing introduced in Learning Unit 7 to compute 
a one-sample t test at a two-tailed .05 level of significance using an example adapted 
from published research.

Example 9.1. Learning is a common construct that behavioral sciences study. 
One common type of learning is the ability to recognize new objects, referred to 
as novelty recognition (Fisher-Thompson, 2017; Privitera, Mayeaux, Schey, & Lapp, 
2013). An example with animals is the object recognition task. A mouse placed in an 
environment with two identical objects for five minutes is later returned to the same 
environment, but one of the objects has been replaced with a new or novel object. 
Because mice are naturally curious, we expect that the mouse will spend more time 
investigating the novel object, thus demonstrating object recognition. To operation-
alize, or make measurable, the percentage of time spent investigating the novel object 
relative to the familiar object, we make the following calculation:

TimeSpent Investigating NovelObject
TimeSpent NovInvestigating eelObject

TimeSpent Investigating Familiar Object

+
×100

Using this formula, if a mouse spends the same amount of time investigating each 
object (in other words, the mouse fails to show object recognition), then the result 
will be 50%. Thus, our standard we will compare against in the null hypothesis for 
this test will be 50%. A score below 50% indicates that subjects recognized the novel 
object but preferred the familiar object. Although unlikely, familiarity preference is a 
remote possibility.

Using a sample data set adapted from published research, we will use the four steps to 
hypothesis testing introduced in Learning Unit 7 to test whether the mean score in sam-
ple data significantly differs from the expected value of 50% at a .05 level of significance.

Step 1: State the hypotheses. The population mean is 50%, and we are testing 
whether or not the population mean differs from the sample mean:

H0 : μ = 50%  For mice given the opportunity to investigate a novel and a 
familiar object, the mean percentage of time spent investigating 
the novel object is equal to 50%, as would be expected by chance.

H1
: μ ≠ 50%  For mice given the opportunity to investigate a novel and a 

familiar object, the mean percentage of time spent investigating 
the novel object is not equal to 50%.

Again, if a mouse spends the same amount of time investigating each object (in 
other words, the mouse fails to show object recognition), then the result will be 50%. 
Thus, our standard we will compare against in the null hypothesis for this test is 50%. 
The higher the percentage above 50%, the more time the mouse spent investigating 
the novel object, and thus the more likely we will be to reject the null hypothesis and 
conclude that object recognition occurred.

Step 2: Set the criteria for a decision. The level of significance for this test is 
.05. We are computing a two-tailed test with n – 1 degrees of freedom. We will use a 
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Learning Unit 9   • t Tests: One-Sample, Two-Independent-Sample, and Related-Samples Designs  133

data set with 15 scores, each from a different mouse, a sample size that is appropriate 
for this behavioral task in research with nonhumans. With n = 15, the degrees of free-
dom for this test are 15 – 1 = 14. To locate the critical values, we find 14 listed in the 
rows of Table C.2 in Appendix C and go across to the 
column for a .05 proportion in two tails combined. The 
critical values are ±2.145.

We will compare the value of the test statistic with 
these critical values. If the value of the test statistic is 
beyond a critical value (either greater than 2.145 or 
less than 2.145), then there is less than a 5% chance 
we would obtain that outcome if the null hypothesis 
were correct, so we reject the null hypothesis; other-
wise, we retain the null hypothesis.

Step 3: Compute the test statistic. Download Novel_Objects.xlsx from the 
student study site: http://study.sagepub.com/priviteraexcel1e. As shown in Figure 9.2, 
Column A contains an ID number for each animal; Column B contains the percentage 
of total investigation time each animal devoted to the novel object. Column C, which 
we save for use later, contains the expected percentage of time each animal would 
have devoted to the novel object if it did not show a preference for either the novel or 
the familiar object.

As shown in Figure 9.2, we insert in column D some labels to keep track of our 
calculations in column E for the one-sample t test:

D4: Mean (M)

D5: Sample size (n)

D6: Standard deviation (SD)

D7: Degrees of freedom (df)

D8: Critical value of t ( tcrit )

We covered mean in Learning Unit 1 and standard deviation in Learning Unit 2.
To the right of the cells mentioned above, we type these functions and formulas 

into column E:

E4: =AVERAGE(B4:B18)

E5: =COUNT(B4:B18)

E6: =STDEV.S(B4:B18)

E7: =E5-1

E8: 2.145

At this point we have what we need to proceed with our calculation. From the val-
ues we have calculated already in rows 4 to 8, we prepare column D with three more 
labels:

Appendix A12

See Appendix A12, p. 298, for 
more on degrees of freedom for 
parametric tests.

Appendix B

See Appendix B2, p. 301, for 
formatting cells.
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134  Section IV • Comparing Means: Significance Testing, Effect Size, and Confidence Intervals 

D9: Estimated standard error ( )sM

D10: Obtained value of t ( tobt )

D11: p value

On our way to finding the t statistic, we compute the estimated standard error. To 
compute the estimated standard error, we divide the sample standard deviation by the 
square root of the sample size:

s
SD

nM =

In column E,

E9: =E6/E5^0.5

which yields

sM = =
9 4
15

2 42
.

.

in cell E9 in Figure 9.2b.
We will compare the sample mean to the population mean stated in the null 

hypothesis: μ = 50. The estimated sample standard deviation is the denominator of 
the t statistic.

t
M

sobt
M

=
− µ

Find the t statistic by substituting the values for the sample mean, M = 59.1; the popu-
lation mean stated in the null hypothesis, μ = 50; and the estimated standard error we 
just calculated, sM = 2 42. . In column E ,

E10: =(E4-50)/E9

which yields

tobt =
−

=
59 1 50

2 42
3 74 0

.
.

. . .in cell E1  in Figure 9 2b

Note that although there is no function in Excel to calculate a t value, there is a func-
tion to calculate the p value associated with a t test. To calculate an exact p value for a 
one-sample t test, we use a second column of expected values equal to 50% for each of the 
15 mice, shown in column C in Figure 9.2. We use the T.TEST function built into Excel.

In column E,
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Learning Unit 9   • t Tests: One-Sample, Two-Independent-Sample, and Related-Samples Designs  135

E11: =T.TEST(B4:B18,C4:C18,2,1).

This function requires two cell ranges of data: B4:B18 contains the observed per-
centage of time spent investigating the novel object, and C4:C18 contains the expected 
percentage of time spent sniffing the novel object: 50% in each cell. After those two 

FIGURE 9.2 ●  One-sample t test. (a) Functions and formulas. (b) Resulting 
calculations from functions and formulas.

(a)

(b)
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136  Section IV • Comparing Means: Significance Testing, Effect Size, and Confidence Intervals 

ranges of data, the next argument required in the func-
tion is the number of tails, for which we specify 2. The 
final argument is the type of t test, which we specify as 
related-samples, which Excel terms “Paired,” with a 1. 
As expected with such a large tobt , the p value returned 
of .002 is small, shown in cell E11 in Figure 9.2b.

Step 4: Make a decision. To decide to reject or 
retain the null hypothesis, we compare the obtained value ( tobt = 3 74. ) to the critical 
values in the t table in Appendix C2. For df = n – 1, 15 – 1 = 14, the critical value at  
α = .05 is 2.145. Because tobt  of 3.74 exceeds the critical value, the decision is to reject 
the null hypothesis. This tobt  indicates that our observed value of 9.1 percentage 
points above the expected value of 50 percentage points is 3.74 times larger than the 
average deviation of 2.42 percentage points of a mean based on 15 samples. If this 
result were reported in a research journal, it would look something like this following 
APA format (APA, 2010):

The percentage of time mice explored the novel object (M = 59.1, SD = 9.4) 
was significantly higher than the percentage expected by chance, t(14) = 3.74, 
p = .002. Thus, the results support the conclusion that the mice demonstrated 
object recognition.

Effect Size for the One-Sample t Test
As described in Learning Unit 7, hypothesis testing identifies whether an effect exists 
in a population. When we decide to retain the null hypothesis, we conclude that an 
effect does not exist in the population. When we decide to reject the null hypothesis, 
we conclude that an effect does exist in the population. However, hypothesis testing 
does not tell us how large the effect is.

In Example 9.1, we concluded that mice investigated a novel object more than they 
investigated a familiar object. To determine the size of an effect, we compute effect 
size, which gives an estimate of the size of an effect in the population. Two measures 
of effect size for the one-sample t test are described in this section: estimated Cohen’s 
d and proportion of variance (eta squared).

To label these calculations, in column D we enter

D13: Estimated Cohen's d

D14: Eta squared (η2 )

Estimated Cohen’s d. The estimate of effect size that is most often used with a t 
test is the estimated Cohen’s d. As described at the beginning of this learning unit 
on the t test, when the population standard deviation is unknown, we use the sample 
standard deviation, because it gives an unbiased estimate of the population standard 
deviation. Similarly, with the estimated Cohen’s d formula, we use the sample stan-
dard deviation as follows:

d
M

SD
=

− µ

Appendix B

See Appendix B2, p. 301, on 
formatting cells to add superscripts.

Estimated  
Cohen’s d is a 
measure of effect 
size in terms of 
the number of 
standard deviations 
that mean scores 
shifted above 
or below the 
population mean 
stated by the null 
hypothesis. The 
larger the value 
of d, the larger 
the effect in the 
population.
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Learning Unit 9   • t Tests: One-Sample, Two-Independent-Sample, and Related-Samples Designs  137

In column E,

E13: =(E4-50)/E6

which yields

d =
−

= =
59 1 50 0

9 4
9 1
9 4

0 97
. .

.
.
.

.

in cell E13 in Figure 9.2b.
We conclude that novelty of an object will increase investigation by mice of that 

object by 0.97 standard deviations above the expectation of equal investigation of 
familiar and novel objects. The effect size conventions (Cohen, 1988) given in the 
middle column of Table 9.2 show that this is a large effect size. We could report this 
measure with the significant t test in Example 9.1 by stating,

The percentage of time mice explored the novel object (M = 59.1, SD = 9.4) was 
significantly higher than the percentage expected by chance, t(14) = 3.74,  
p < .01, d = 0.97. Thus, the results support the conclusion that the mice 
demonstrated object recognition.

Proportion of Variance: Eta squared (ηη2
). Another measure of effect size is to 

estimate the proportion of variance that can be accounted for by some treat-
ment. A treatment, which is any unique characteristic of a sample or any unique 
way that a researcher treats a sample, can change the value of a dependent variable. 
A treatment is associated with variability in a study. Proportion of variance estimates 
how much of the variability in a dependent variable can be accounted for by the treat-
ment. In the proportion of variance formula, the variability explained by a treatment 
is divided by the total variability observed:

Proportionof variance
variance explained

total variance
=

In Example 9.1, we found that mice investigated a novel object more than they inves-
tigated a familiar object. The unique characteristic of the sample in this study was that 
the mice encountered a novel object that attracted their attention, not just two familiar 
objects. The variable we measured (i.e., the dependent variable) was percentage of total 
time investigating that was devoted to the novel object. Measuring proportion of vari-
ance determines how much of the variability in the dependent variable (percentage of 
investigation time) can be explained by the treatment (the fact that one of the objects 
was novel). Here, we describe a measure of proportion of variance, eta squared (η2 ).

Eta squared is a measure of proportion of variance that can be expressed in a single 
formula based on the result of a t test:

η2
2

2=
+
t

t df

Proportion of 
variance is a 
measure of effect 
size in terms of 
the proportion 
or percentage 
of variability 
in a dependent 
variable that can 
be explained or 
accounted for by a 
treatment.

In hypothesis 
testing, a 
treatment is 
any unique 
characteristic of 
a sample or any 
unique way that a 
researcher treats a 
sample.
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In this formula, t is the value of the t statistic, and df is the degrees of freedom. In 
this example, t = 3.74, and df = 14. To find variance, we square the standard deviation. 
Thus, in the eta squared formula, we square the value of t to find the proportion of 
variance. In column E,

E14: =E10^2/(E10^2+E7)

which yields

η2
2

2

3 74
3 74 14

13 9876
13 9876 14

0 50=
+

=
+

=
.

.
.

.
.

in cell E14 in Figure 9.2b.
We conclude that 50% of the variability in the percentage of time spent investi-

gating objects (the dependent variable) can be explained by the fact that one of the 
objects was novel (the treatment). We could report this measure with the significant t 
test in Example 9.1 by stating,

The percentage of time mice explored the novel object (M = 59.1, SD = 9.4) 
was significantly higher than the percentage expected by chance, t(14) = 3.74, 
p < .01 (η2  = .50). Thus, the results support the conclusion that the mice 
demonstrated object recognition.

The third column in Table 9.2 displays guidelines for interpreting a trivial, small, 
medium, and large effect for a variety of measures for effect size, including η2. Using 
this table, we find that η2  = .4998 is a large effect. Although eta squared is a popular 
measure of proportion of variance, it tends to overestimate the proportion of variance 
explained by a treatment. To correct for this bias, many researchers use a modified 
eta squared formula, called omega-squared. Coverage of omega-squared is beyond the 
scope of this book.

TABLE 9.2 ●  The size of an effect using estimated Cohen’s d and proportion of 
variance (eta squared).

Description of Effect d η2 ω2

Trivial — η2 < .01 ω2 < .01

Small d < 0.2 .01 < η2 < .09 .01 < ω2 < .09

Medium 0.2 < d < 0.8 .10 < η2 < .25 .10 < ω2 < .25

Large d > 0.8 η2 > .25 ω2 > .25

Note that Cohen’s d is interpreted the same with negative values. The sign (+, -) simply indicates the direction 
of the effect.
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Learning Unit 9   • t Tests: One-Sample, Two-Independent-Sample, and Related-Samples Designs  139

Confidence Intervals for the One-Sample t Test
In Example 9.1, we stated a null hypothesis regarding the value of the mean in a pop-
ulation. We can further describe the nature of the effect by determining where the 
effect is likely to be in the population by computing the confidence intervals.

As introduced in Learning Unit 7, there are two types of estimates: a point estimate 
and an interval estimate. When using one sample, a point estimate is the sample mean 
we measure. The interval estimate, reported as a confidence interval, is stated within a 
given level of confidence, which is the likelihood that an interval contains an unknown 
population mean.

To illustrate confidence intervals for the one-sample t test, we will revisit Example 
9.1 to compute the confidence intervals at a 95% level of confidence for the data ana-
lyzed using the one-sample t test. To find the confidence intervals, we need to evaluate 
an estimation formula. We will use the estimation formula to identify the upper and 
lower confidence limits within which the unknown population mean is likely to be 
contained. The estimation formula for the one-sample t test is as follows:

M t sM± ( )

In all, we follow three steps to estimate the value of a population mean using a point 
estimate and an interval estimate:

Step 1: Compute the sample mean and standard error.

Step 2: Choose the level of confidence and find the critical values at that level of 
confidence.

Step 3: Compute the estimation formula to find the confidence limits.

Step 1: Compute the sample mean and standard error. We have already 
computed the sample mean, which is the point estimate of the population mean, 
M = 59.1 in cell E4 of Figure 9.2b. We have also already computed the standard 
error of the mean, which is the sample standard deviation divided by the square 
root of the sample size, SM = 2 42.  in cell E9 of Figure 9.2b.

Step 2: Choose the level of confidence and find the critical values at that 
level of confidence. In this example, we chose the 95% confidence interval (CI). The 
critical value at this level of confidence will be the same as we found in Step 2 for Example 
9.1 using hypothesis testing. As shown in Table 9.3, the 95% level of confidence corre-
sponds to a two-tailed test at a .05 level of significance using hypothesis testing. Thus, 
the critical value for the interval estimate is 2.145, as shown in cell E8 of Figure 9.2b.

To explain further how this critical value was determined, remember that in a sam-
pling distribution, 50% of sample means fall above the sample mean we selected, and 
50% fall below it. We are looking for the 95% of sample means that surround the 
sample mean we selected, meaning the 47.5% of sample means above and the 47.5% 
of sample means below the sample mean we selected. This leaves only 2.5% of sample 
means remaining in the upper tail and 2.5% in the lower tail. Table 9.3 shows how  
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different levels of confidence using estimation correspond to different two-tailed levels 
of significance (α) using hypothesis testing. Referring to Table 9.3, we find that a 95% CI 
corresponds to a two-tailed test at a .05 level of significance. To find the critical value at 
this level of confidence, we look in the t table in Table C.2 in Appendix C. The degrees 
of freedom are 14 (df = n − 1 for a one-sample t test). The critical value for the interval 
estimate is 2.145. Multiplying the observed standard error of the mean by the critical 
value of t tells us how far above the sample mean 47.5% of all sample means would fall 
and how far below the mean another 47.5% of all sample means would fall. This range 
above and below the sample mean encompasses 95% of sample means.

Step 3: Compute the estimation formula to find the confidence limits 
for a 95% confidence interval. In column D,

D16: t sM( )

D17: 95% CI upper limit

D18: 95% CI lower limit

To compute the formula, multiply t by the estimated standard error. In column E,

E16: =E8*E9

which yields

t sM( ) = ( ) =2 145 2 42 5 20. . .

in cell E16 in Figure 9.2b.
Add 5.20 to the sample mean to find the upper confidence limit, and subtract 5.20 

from the sample mean to find the lower confidence limit. In column E,

E17: =E4+E16

E18: =E4-E16

TABLE 9.3 ●  Levels of significance using hypothesis 
testing and the corresponding levels of 
confidence using estimation.

Level of Confidence
Level of Significance  
(α level, two-tailed)

99% .01

95% .05

90% .10

80% .20
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which yields

M t sM+ ( ) = + =59 1 5 20 64 3. . .

in cell E17 in Figure 9.2b, and

M t sM− ( ) = − =59 1 5 20 53 9. . .

in cell E18 in Figure 9.2b.
As shown in Figure 9.3, the 95% confidence interval in this population is between 

a percentage of 53.9% and 64.3% of investigation time directed toward a novel object. 
We can estimate within a 95% level of confidence that the mean percentage of time 
investigating a novel object is between 53.9% and 64.3% in the population. We are 
95% confident that the population mean falls within this range, because 95% of all 
sample means we could have selected from this population fall within the range of 
sample means we specified.

Computing the One-Sample  
t Test Using the Analysis Toolpak
We can also calculate this t test using the Analysis ToolPak available in Excel for easy 
and accurate calculation. We’ll guide you through the steps to do the analysis we did 
for the one-sample t test.

Return to the workbook Novel_Objects.xlsx. Click on the Data tab, and then on 
the Data Analysis icon all the way to the right. Select “t-Test: Paired Two Sample 
for Means,” as shown in Figure 9.4a. As we mentioned above, we can get the same 
result from a one-sample t test as we can from a related-samples t test (which 
is called a Paired t-Test in Excel) when we pair the value predicted by the null 
hypothesis, column C in Figure 9.2, with each score that was measured, column B 
in Figure 9.2.

Selecting “t-Test: Paired Two Sample for Means” yields the dialog box in Figure 9.4b. 
For Variable 1, we select the observed values of the percentage of time spent exploring 
the novel object in cells B3 through B18, which includes in B3 a label for the data.  

FIGURE 9.3 ●  At a 95% CI, the trust population mean score falls between 53.9 
and 64.3 in this population of curious mice.

The point estimate is M = 59.1

53.9 64.3
706555 6050 75 80

95% CI 53.9 to 64.3
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FIGURE 9.4 ●  Performing a one-sample t test with the Analysis ToolPak in 
Excel. (a) Selecting “t-Test: Paired Two Sample for Means” to 
perform a one-sample t test. (b) Specifying the location of the 
data and parameters for the t test.

For Variable 2, we select the expected percentages in C3 through C18, all of which 
are 50, and include in C3 a label for the data. The Hypothesized Mean Difference we 
expect to be 0. (Zero is the default if this box remains blank.) Check the Labels box so 
that the output contains the labels from B3 and C3. We keep our output on the same 
page by selecting Output Range and clicking in cell G1.

Clicking OK on the dialog box returns the output table in Figure 9.5. The labels 
that we included in the cell range for the analysis are in H3 and I3. We can change 
these labels as we desire. Notice that in Figure 9.5, we get the same mean of 59.1% in 
cell H4, same tobt  of 3.74 in cell H10, and same two-tailed p value of .002 in cell H13 
as we did in Figure 9.2b. Although neither an estimate of effect size nor confidence 
intervals are generated automatically, the output table gives the mean from which 
we would subtract the expected value of 50%, the variance, and the degrees of free-
dom. With this information we can calculate effect size and confidence intervals as 
we did above.

(a)

(b)
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FIGURE 9.5 ● Results of one-sample t test using the Analysis ToolPak.

Computing the Two-Independent-Sample t Test
In this section, we compute the two-independent-sample t test, which is used 
to compare the mean difference between two groups; specifically, to test hypoth-
eses regarding the difference between two population means. In terms of the null 
hypothesis, we state the mean difference that we expect in the population and com-
pare it to the difference we observe between the two sample means in our sample. 
Often, a visual inspection of data from two groups can be quite insightful in terms 
of determining whether groups differ. Appendix A8 provides an illustration for how 
to inspect grouped data visually. For a two-independent-sample t test concerning two 
population means, we make four assumptions:

1. Normality. We assume that data in each population being sampled are 
normally distributed. This assumption is particularly important for small 
samples, because the standard error is typically much larger. In larger sample 
sizes (n > 30), the standard error is smaller, and this assumption becomes less 
critical as a result.

2. Random sampling. We assume that the data we measure were obtained from 
samples that were selected using a random sampling procedure. 

3. Independence. We assume that each measured outcome or observation is 
independent, meaning that one outcome does not influence another. 
Specifically, outcomes are independent when the probability of one outcome 
has no effect on the probability of another outcome. Using random sampling 
usually satisfies this assumption. 

The two-
independent-
sample t test is 
a statistical 
procedure used to 
compare the mean 
difference between 
two independent 
groups. This test 
is specifically used 
to test hypotheses 
concerning the 
difference between 
two population 
means, where the 
variance in one or 
both populations is 
unknown.
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4. Equal variances. We assume that the variances in each population are equal 
to each other. This assumption is usually satisfied when the larger sample 
variance is not greater than two times the smaller:

larger s
smaller s

2

2 2<

Keep in mind that satisfying the assumptions for the 
t test is critically important. That said, for each exam-
ple in this book, the data are intentionally constructed 
such that the assumptions for conducting the tests have 
been met. In Example 9.2 we follow the four steps to 
hypothesis testing introduced in Learning Unit 7 to 
compute a two-independent-sample t test using an 
example adapted from published research.

Example 9.2. For an example, let us consider the impact of safety training in 
the workplace. Nonfatal workplace injuries can be expressed as a rate: the number 
of injuries per 200,000 hours worked by all employees. A nonfatal incidence rate of 
5 means that 5 nonfatal injuries in 200,000 hours of work were accumulated by all 
employees at a company. Thus, the incident rate that we analyze has been adjusted for 
size of company.

Using a sample data set adapted from published research, we will use the four steps 
to hypothesis testing introduced in Learning Unit 7. We examine at a .05 level of sig-
nificance whether safety training for 40 companies produces a difference in incidence 
rate as compared to 40 other companies without safety training.

Step 1: State the hypotheses. The null hypothesis states that there is no differ-
ence between the two groups, and we are testing whether or not there is a difference:

H0 1 2 0: µ µ− =  There is no difference; safety training has no effect on the 
incidence rate of nonfatal injuries.

H0 1 2 0: µ µ− ≠  Safety training does have an effect on the incidence rate of 
nonfatal injuries.

Step 2: Set the criteria for a decision. The level of significance for this test 
is .05. We are computing a two-tailed test, so we place the rejection region in both 
tails. For the t test, the degrees of freedom for each group or sample are n – 1. Table 9.4 
compares degrees of freedom for one-sample and for two-independent-sample t tests. 
To find the degrees of freedom for two samples, then, we add the degrees of freedom 
in each sample. This can be found using one of three methods:

Method 1: df for two-independent-sample t test = df df1 2+

Method 2: df for two-independent-sample t test = n n1 21 1−( ) + −( )

Method 3: df for two-independent-sample t test = N - 2

Appendix A8

See Appendix A8, p. 290, for how 
to visually inspect data to compare 
differences between two groups.
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As summarized in Table 9.4, we can add the degrees 
of freedom for each sample using the first two methods. 
In the third method, N is the total sample size for both 
groups combined, and we subtract 2 from this value. All 
three methods will produce the same result for degrees 
of freedom. The degrees of freedom for each sample 
here are 40 – 1 = 39. Thus, the degrees of freedom for 
the two-independent-sample t test are the sum of these 
degrees of freedom:

df = 39 + 39 = 78

In Table C.2 in Appendix C, p. 318, the degrees of freedom in the leftmost column 
increase by 1 up to df = 30. After 30, they increase by 10. Because there is no entry for 
df = 78, we use the next smallest value, which is df = 60. Move across the columns to 
find the critical value for a .05 proportion in two tails combined. The critical values 
for this test are ±2.000.

We will compare the value of the test statistic with these critical values. If the value 
of the test statistic is beyond a critical value (either greater than +2.000 or less than 
-2.000), then there is less than a 5% chance we would obtain that outcome if the null 
hypothesis were correct, so we reject the null hypothesis; otherwise, we retain the 
null hypothesis.

Step 3: Compute the test statistic. Download Employee_Safety_Training.xlsx 
from the student study site: http://study.sagepub.com/priviteraexcel1e. Column A con-
tains the rate of nonfatal injuries per 200,000 hours that employees worked at companies  

Appendix A12

See Appendix A12, p. 298, for 
more on degrees of freedom for 
parametric tests.

TABLE 9.4 ● Computing the degrees of freedom for a t test.

Participants

Teacher

Difference ScoresPresent Absent

1 220 210 (220 - 210) = 10

2 245 220 (245 - 220) = 25

3 215 195 (215 - 195) = 20

4 260 265 (260 - 265) = -5

5 300 275 (300 - 275) = 25

6 280 290 (280 - 290) = -10

7 250 220 (250 - 220) = 30

8 310 285 (310 - 285) = 25
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with safety training; column B contains that same measure at companies without safety 
training. We can copy A2 to B3 and paste them to D2 to E3 as shown in Figure 9.6. These 
column headers label the two treatments of the independent variable.

Also as shown in Figure 9.6, we insert in column C labels to keep track of our cal-
culations in columns D and E for the two-independent-sample t test:

C4: Mean (M)

C5: Sample size (n)

C6: Variance ( s2 )

C7: Degrees of freedom (df)

To the right of the cells mentioned above, we type these functions and formulas 
into column D and E:

D4: =AVERAGE(A4:A43) E4: =AVERAGE(B4:B43)

D5: =COUNT(A4:A43) E5: =COUNT(B4:B43)

D6: =VAR.S(A4:A43) E6: =VAR.S(B4:B43)

D7: =D5-1 E7: =E5-1

As mentioned above, the critical value of t taken from Table C.2 in Appendix C is 
2.000.

C8: Critical value of t, df = 60 in Table C.2 ( tcrit )

 D8: 2.000

These values in D4 through E7 allow us to proceed with the calculation of the 
two-independent-sample t test and compare that result with the tcrit  of 2.000. We 
prepare column C with six more labels:

C9: Sample mean difference (M1 – M2)

C10: Hypothesized mean difference (μ1 – μ2)

C11: Pooled sample variance ( sp
2 )

C12: Standard error for difference ( )sM M1 2-

C13: Obtained value of t (tobt)

C14: p value

In the formula for a two-independent-sample t test, we subtract the mean differ-
ence between the sample means, cell D9, from the mean difference stated in the null, 
cell D10. To column D we add:
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D9: =D4-E4

D10: 0

We divide this difference by the combined standard 
error in both samples, called the estimated standard 
error for the difference, which is computed as

s
s

n

s

nM M
p p

1 2

2

1

2

2
− = +

Notice that the numerator in the estimated standard 
error for the difference formula is sp

2 , which is called the 
pooled sample variance. The first step, then, to com-
pute the estimated standard error for the difference is to 
compute the pooled sample variance. Because we have 
equal sample sizes in the two groups, we can average the 
two sample variances using the following formula:

s
s s

p
2 1

2
2
2

2
=

+

Appendix A9 provides more detail regarding the calculation and interpretation of the 
pooled sample variance.

In column D11, we calculate pooled sample variance:

D11: =(D6+E6)/2

which yields

sp
2 3 61 4 92

2
4 27=

+
=

. .
.

in cell D11 in Figure 9.6b.
Having the pooled sample variance allows us to then calculate the estimated stan-

dard error for the difference in column D (notice that 4.27 is now the numerator in 
the estimated standard error for the difference formula):

D12: =((D11/D5)+(D11/E5))^0.5

which yields

sM M1 2

4 27
39

4 27
39

0 46− = + =
. .

.

in cell D12 in Figure 9.6b.

Appendix B

See Appendix B2, p. 301, on 
formatting cells to add superscripts 
or subscripts.

See Appendix B8, p. 312, on 
inserting equations, especially to 
use both a superscript and subscript 
or add multiple subscripts.

Appendix A9

See Appendix A9, p. 292, for more 
detail regarding the calculation and 
interpretation of the pooled sample 
variance.

The estimated 
standard error for 
the difference is 
an estimate of the 
standard deviation 
of a sampling 
distribution of 
mean differences 
between two 
sample means. 
It is an estimate 
of the standard 
error or standard 
distance that mean 
differences can be 
expected to deviate 
from the mean 
difference stated in 
the null hypothesis.

The pooled sample 
variance is the 
mean sample 
variance of two 
samples. When 
the sample size 
is unequal, the 
variance in each 
group or sample 
is weighted by its 
respective degrees 
of freedom.
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Now we have the three components needed to calculate the two-independent-sam-
ple t test:

t
M M

sM M
obt =

−( ) − −

−

1 2 1 2

1 2

( )µ µ

In column D we insert

D13: =(D9-D10)/D12

which yields

tobt =
− −

= −
1 95 0
0 46

4 222
.
.

.

in cell D13 in Figure 9.6b.
Finally, in column D we calculate a p value:

D14: =T.TEST(A4:A43,B4:B43,2,2)

which yields a p value of .000065 in cell D14 in Figure 9.6b.

Step 4: Make a decision. The tobt  value in cell D13 is -4.222. This value far 
exceeds our two-tailed critical value at α = .05 of 2.000 for df = 60 from Table C2 in 
Appendix C. In fact, the exact p value that we can calculate with Excel indicates that 
the probability of such an outcome occurring, if the null hypothesis were true, is 
very unlikely: p = .000065 in cell D14 in Figure 9.5b. If this result were reported in a 
research journal, it would look something like this following APA format (American 
Psychological Association, 2010):

The mean nonfatal incidence rate at companies with employee safety 
training (M = 8.23, SD = 1.90) was significantly lower than was the rate at 
companies without employee safety training (M = 10.18, SD = 2.22), t(78) = 
-4.222, p < .001.

Effect Size for the Two-Independent-Sample t Test
Hypothesis testing is used to identify whether an effect exists in one or more popula-
tions of interest. When we reject the null hypothesis, we conclude that an effect does 
exist in the population. When we retain the null hypothesis, we conclude that an 
effect does not exist in the population. In Example 9.2, we concluded that an effect 
does exist. We will compute effect size for the test in Example 9.2 to determine the 
effect size of this result or mean difference. We can identify two measures of effect 
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FIGURE 9.6 ●  Two-independent-sample t test. (a) Functions and formulas.  
(b) Results of the calculations.

(a)

(b)
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size for the two-independent-sample t test: estimated Cohen’s d and proportion of 
variance with eta squared.

To label these calculations, in column C we enter

C16: Estimated Cohen's d

C17: Eta squared (η2 )

Estimated Cohen’s d. As stated in Example 9.1 above, estimated Cohen’s d is 
most often used with the t test. When the estimated Cohen’s d is used with the two- 
independent-sample t test, we place the difference between two sample means in 
the numerator and the pooled sample standard deviation (or square root of 
the pooled sample variance) in the denominator. The pooled sample standard devi-
ation is an estimate for the pooled or mean standard deviation for the difference 
between two population means. The formula for an estimated Cohen’s d for the 
two-independent-sample t test is

M M

sp

1 2

2

-

In column D, enter

D16: =(D4-E4)/D11

which yields

d =
−

= −
8 23 10 18

4 27
0 46

. .
.

.

in cell D 16 in Figure 9.6b.
We conclude safety training decreases nonfatal incident rate by 0.46 standard devi-

ations below the mean as compared to no safety training. The effect size conventions 
given in the middle column of Table 9.2 show that this is a medium effect size. We 
could report this measure with the significant t test in Example 9.2 by stating,

The mean nonfatal incidence rate at companies with employee safety training  
(M = 8.23, SD = 1.90) was significantly lower than was the rate at companies without 
employee safety training (M = 10.18, SD = 2.22), t(78) = -4.222, p < .01, d = -0.46.

Proportion of Variance: Eta squared (ηη2 ). Another measure of effect size is 
proportion of variance, which estimates the proportion of variance in a dependent 
variable that can be explained by some treatment. In Example 9.2, this measure can 
describe the proportion of variance in the nonfatal incident rate (the dependent vari-
able) that can be explained by whether companies did or did not have safety training 
(the treatment). One measure of proportion of variance for the two-independent- 
sample t test is eta squared, η2 .

Pooled sample 
standard deviation 
is the combined 
sample standard 
deviation of two 
samples. It is 
computed by taking 
the square root of 
the pooled sample 
variance. This 
measure estimates 
the standard 
deviation for the 
difference between 
two population 
means.
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Eta squared can be expressed in a single formula based on the result of a t test:

η2
2

2=
+
t

t df

In Example 9.2, t = -4.22, and df = 78. To find proportion of variance using the eta 
squared formula, we then square the value of t in the numerator and the denominator. 
In column D, insert:

D17: =D13^2/(D13^2+78)

which yields

η2
2

2

4 222
4 222 78

17 83
17 83 78

19=
−

− +
=

+
=

.
.

.
.

.

in cell D17 in Figure 9.6b.
We conclude that only 19% of the variability in nonfatal incident rates can be 

explained by whether companies did or did not provide safety training. Based on the 
effect size conventions in Table 9.2, this result indicates a medium effect size. We can 
report this estimate with the significant t test in Example 9.2 by stating,

The mean nonfatal incidence rate at companies with employee safety training 
(M = 8.23, SD = 1.90) was significantly lower than was the rate at companies 
without employee safety training (M = 10.18, SD = 2.22), t(78) = -4.222, p < .01, 
η2

 = .19.

Confidence Intervals for  
the Two-Independent-Sample t Test
In Example 9.2, we stated a null hypothesis regarding the mean difference in a pop-
ulation. We can further describe the nature of the effect by determining where the 
effect is likely to be in the population by computing the confidence intervals.

As introduced in Learning Unit 7, there are two types of estimates: a point estimate 
and an interval estimate. When comparing two samples, a point estimate is the sam-
ple mean difference we measure. The interval estimate, often reported as a confidence 
interval, is stated within a given level of confidence, which is the likelihood that an 
interval contains an unknown population mean difference.

To illustrate confidence intervals for the two-independent-sample t test, we 
will revisit Example 9.2, and using the same data, we will compute the confidence 
intervals at a 95% level of confidence using the three steps to estimation first 
introduced in Example 9.1. For a two-independent-sample t test, the estimation 
formula is

M M t sM M1 2 1 2
− ± ( )−
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Step 1: Compute the sample mean and standard error. The difference between 
the two sample means is M M1 2 1 95− = − .  nonfatal injuries per 200,000 hours that 
employees worked. Therefore, the mean difference or point estimate of the population 
mean difference is −1.95. (We already computed this value for Example 9.2 in Step 3 
of hypothesis testing.)

The estimated standard error for the difference, sM M1 2- , is equal to 0.46. (We already 
computed this value as well for Example 9.2 in Step 3 of hypothesis testing.)

Step 2: Choose the level of confidence and find the critical values at 
that level of confidence. In this example, we want to find the 95% confidence 
interval (CI), so we choose a 95% level of confidence. Remember, in a sampling dis-
tribution, 50% of the differences between two sample means fall above the mean 
difference we selected in our sample, and 50% fall below it. We are looking for the 
95% of differences between two sample means that surround the mean difference we 
measured in our sample. A 95% CI corresponds to a two-tailed test at a .05 level of 
significance. To find the critical value at this level of confidence, we look in the t table 
in Table C.2 in Appendix C. As explained in Step 2 in Example 9.2, we use df = 60. The 
critical value for the interval estimate is t = 2.000.

Step 3: Compute the estimation formula to find the confidence limits 
for a 95% confidence interval. Refer again to Figure 9.6. In column C, insert

C19: t sM M( )
1 2-

C20: 95% CI upper limit

C21: 95% CI lower limit

Because we are estimating the difference between two sample means in the popula-
tion with an unknown variance, we use the M M t sM M1 2 1 2

− ± ( )−  estimation formula.
To compute the formula, multiply t by the estimated standard error for the difference:

t sM M1 2−( )
In column D,

D19: =D8*D12

which yields

t sM M1 2
2 000 0 46 0 92−( ) = ( ) =. . .

in cell D19 in Figure 9.6b.
Add 0.92 to the sample mean difference to find the upper confidence limit, and 

subtract 0.92 from the sample mean difference to find the lower confidence limit. In 
column D,

D20: =D9+D19

D21: =D9-D19
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which yields

M M t sM M1 2 1 2
1 95 0 92 1 03− + ( ) = − + = −− . . .

in cell D20 in Figure 9.6b, and

M M t sM M1 2 1 2
1 95 0 92 2 87− − ( ) = − − = −− . . .

in cell D21 in Figure 9.6b.
As shown in Figure 9.7, the 95% confidence interval in this population is between 

a mean difference in nonfatal injury incidence rate of −2.87 and −1.03 per 200,000 
hours worked. We can estimate within a 95% level of confidence that the difference 
between groups in nonfatal injury incidence rate is between −2.87 and −1.03 per 
200,000 hours worked. We are 95% confident that the mean difference in the popu-
lation falls within this range, because 95% of all sample mean differences we could 
have selected from this population fall within the range of sample mean differences 
we specified.

Computing the Two-Independent- 
Sample t Test Using the Analysis Toolpak
We can also use the Analysis ToolPak available in Excel for easy and accurate cal-
culation. We’ll guide you through the steps to do the analysis for the two-indepen-
dent-sample t test.

Click on the Data tab, and then on the Data Analysis icon all the way to the right. 
Select “t-Test: Two-Sample Assuming Equal Variances” (Figure 9.8a). According to 
the fourth assumption of the two-independent-sample t test described above, vari-
ances in the two samples must be equal. The rule of thumb we use is that the larger 
variance is no more than twice the smaller variance. That is the case with these 
data, as is shown in Figure 9.6b, cells D6 and E6. The variances for the two groups 
are 3.61 and 4.92.

FIGURE 9.7 ●  At a 95% CI, the mean difference nonfatal injury incidents falls 
between -2.87 and -1.03.

The point estimate is M = −1.95

95% CI −2.87 to −1.03

−2.87 −1.03

10−2 −1−3
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FIGURE 9.8 ●  Performing a two-independent-sample t test with the Analysis 
ToolPak in Excel. (a) Selecting “t-Test: Two-Sample Assuming 
Equal Variance” to perform a one-sample t test. (b) Specifying 
the location of the data and parameters for the t test.

Selecting “t-Test: Two-Sample Assuming Equal Variance” yields the dialog box in 
Figure 9.8b. For Variable 1, we select the nonfatal injury incident rate for companies 
with safety training in cells A3 through A43, which includes in A3 a label for the data. 
For Variable 2, we select the data for companies without safety training in cells B3 
through B43, and include in B3 a label for the data. The Hypothesized Mean Difference 
is 0. Check the Labels box so that the output contains the labels from A3 and B3. We 
keep our output on the same page by selecting Output Range and clicking in cell F3.

Clicking “OK” on the dialog box returns the output table in Figure 9.9. Notice 
that in Figure 9.9, we get the same means of 8.23 in cell H4 and 10.18 in cell I4 as we 
obtained in Figure 9.6b. We also get the same tobt  of -4.222 in cell H10 and same p 
value of .000065 in cell H13 as we did in Figure 9.7b. The tcrit  in cell H14 in Figure 9.9 
is for df = 78 and is thus more precise than the one stated in Step 2 above and shown 
in Figure 9.6. Although neither an estimate of effect size nor confidence intervals are 
generated automatically, the output table gives the means of the two groups, the vari-
ance, and the degrees of freedom. With this information we can calculate effect size 
and confidence intervals as we did above.

(a)

(b)

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Learning Unit 9   • t Tests: One-Sample, Two-Independent-Sample, and Related-Samples Designs  155

FIGURE 9.9 ●  Results of two-independent-sample t test using the Analysis 
ToolPak.

Computing the Related-Samples t Test
In this section, we compute the related-samples t test, which is used to compare 
the mean difference between pairs of scores. In terms of the null hypothesis, we 
start by stating the null hypothesis for the mean difference between pairs of scores 
in a population, and we then compare this to the difference we observe between 
paired scores in a sample. The related-samples t test is different from the two- 
independent-sample t test in that first we subtract one score in each pair from the 
other to obtain the difference score for each participant; then we compute the test 
statistic. Appendix A10 provides an overview for the reason we compute difference 
scores. For a related-samples t test, we make two assumptions:

1. Normality. We assume that data in the population of difference scores are 
normally distributed. Again, this assumption is most important for small 
sample sizes. With larger samples (n > 30), the standard error is smaller, and 
this assumption becomes less critical as a result.

2. Independence within groups. The samples are related or matched between 
groups. However, we must assume that difference scores were obtained from 
different individuals within each group or treatment.

Again, keep in mind that satisfying the assumptions for the t test is critically 
important. That said, for each example in this book, the data are intentionally 
constructed such that the assumptions for conducting the tests have been met. In 
Example 9.3, we follow the four steps to hypothesis testing introduced in Learning 
Unit 7 to compute a related-samples t test using an example adapted from published 

The related-
samples t test is 
a statistical 
procedure used to 
test hypotheses 
concerning two 
related samples 
selected from 
populations in 
which the variance 
in one or both 
populations is 
unknown.

A difference 
score is a score or 
value obtained by 
subtracting one 
score from another. 
In a related-
samples t test, 
difference scores 
are obtained prior 
to computing the 
test statistic.

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



156  Section IV • Comparing Means: Significance Testing, Effect Size, and Confidence Intervals 

research. Note that there are many types of designs 
that fit into the category of related-samples. An over-
view of the types of designs that fit into this category 
is provided in Appendix A11.

Example 9.3. One area of focus in cognitive psy-
chology is attention. Psychologists have examined 
what kinds of visual stimuli capture our attention 
most quickly. The course of human evolution may 
have predisposed us to notice animals more readily 
than we notice inanimate objects (Hagen & Laeng, 
2016; New, Cosmides, & Tooby, 2007). In our evolu-
tionary past, animals could have been predators that 
would harm us or food that would nourish us. Thus 
animal objects in the environment may have held 
more meaning than nonanimal objects such as plants 
or rocks. Changes to animate stimuli may capture our 
attention more quickly than changes in other stim-
uli. Suppose we conduct a study of whether people 
are faster to detect change in animate targets (e.g., 

people or animals) than in inanimate targets (e.g., plants, cars). We show partici-
pants several pairs of scenes that are virtually identical except for one change. That 
change could be to an animate object or to an inanimate object. For 35 participants, 
we record to the nearest 0.01 second the time taken for correct identification of a 
change. Using a sample data set adapted from published research, we will use the 
four steps to hypothesis testing introduced in Learning Unit 7 to test for a differ-
ence in their responses to each kind of change, animate versus inanimate, at a .05 
level of significance.

Step 1: State the hypotheses. Because we are testing whether or not a difference 
exists, the null hypothesis states that there is no mean difference, and the alternative 
hypothesis states that there is a mean difference:

H0 1 2 0: µ µ− =  No difference; changes in animate as compared to inanimate 
objects do not differ in time to detection.

H0 1 2 0: µ µ− ≠  Changes in animate as compared to inanimate objects differ in 
time to detection.

Step 2: Set the criteria for a decision. The level of significance for this test 
is .05. This is a two-tailed test for the mean difference between two related samples. 

The degrees of freedom for this test are df = 35 – 1 = 34.
Because df = 34 is not available in Table C.2 in 

Appendix C, we take the closest smaller value, which 
is df = 30. Move across the columns to find the critical 
value for a .05 proportion in two tails combined. The 
critical values for this test are ±2.042.

We will compare the value of the test statistic 
with these critical values. If the value of the test  

Appendix A10

See Appendix A10, p. 293, for more 
detail regarding why difference 
scores are calculated for a related-
samples t test.

Appendix A11

See Appendix A11, p. 295, for 
more detail regarding the types 
of designs that are considered 
related-samples designs.

Appendix A12

See Appendix A12, p. 298, for 
more on degrees of freedom for 
parametric tests.
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statistic is beyond a critical value (either greater than +2.042 or less than -2.042), 
then there is less than a 5% chance we would obtain that outcome if the null 
hypothesis were correct, so we reject the null hypothesis; otherwise, we retain 
the null hypothesis.

Step 3: Compute the test statistic. Download Visual_Change.xlsx from the 
student study site: http://study.sagepub.com/priviteraexcel1e. As shown in Figure 9.10, 
participants are identified in column A, and their times to detect visual change in 
animate and inanimate objects are listed in the same row. Note that, in this spread-
sheet, the information for a participant is all on one row, and that one row contains 
information from only a single participant.

To compute the test statistic, we (1) compute a difference score by subtracting for 
each participant one measure from the other measure; (2) compute the mean, vari-
ance, and standard deviation of difference scores; (3) compute the estimated standard 
error for difference scores; and then (4) compute the test statistic.

(1) Compute the difference scores. In cell D3, type “D” to signify that the col-
umn will contain difference scores, as in Figure 9.10. To calculate a difference score 
for the first participant, enter into cell D4 =B4-C4. Select cell D4. Fill down to cell 
D38, or copy D4 and paste from D5 to D38. Keep in mind that the sign (negative 
or positive) of difference scores matters when we com-
pute the mean and standard deviation.

(2) Compute the mean, variance, and standard 
deviation of difference scores, and the estimated 
standard error for the difference scores (sMD). 
We’ll reserve column E for calculating D2, which 
we need on our way to calculating the variance and 
standard deviation of the difference scores. Use col-
umn F, as in Figure 9.10, for labels to keep track of 
what we calculate:

F4: Mean difference score ( MD )

F5: Sample size (n)

F6: Variance of the difference scores ( )sD
2

F7: Standard deviation of difference scores ( )sD

F8: Standard error for difference scores ( )sMD

To the right of the cells in column F mentioned above, type into Column G func-
tions and formulas to calculate the values, as shown in Figure 9.10:

G4: =AVERAGE(D4:D38)

G5: =COUNT(D4:D38)

G6: =VAR.S(D4:D38)

Appendix B

See Appendix B2, p. 301, on 
formatting cells to add superscripts 
or subscripts.

See Appendix B8, p. 312, on 
inserting equations, especially to 
use both a superscript and subscript 
or add multiple subscripts.

The estimated 
standard error 
for difference 
scores (sMD ) is 
an estimate of the 
standard deviation 
of a sampling 
distribution of mean 
difference scores. 
It is an estimate 
of the standard 
error or standard 
distance that the 
mean difference 
scores deviate from 
the mean difference 
score stated in the 
null hypothesis.

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



158  Section IV • Comparing Means: Significance Testing, Effect Size, and Confidence Intervals 

FIGURE 9.10 ●  Related-samples t test. (a) Functions and formulas.  
(b) Results of calculations.

G7: =G6^0.5

G8: =G7/G5^.5

(3) Compute the test statistic. At this point we are ready to proceed with the calcu-
lation and evaluation of the related-samples t test. Use column F, as in Figure 9.10, for 
labels to keep track of what we calculate:

(a)

(b)
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F9: Degrees of freedom (df)

F10: Critical value of t ( tcrit )

F11: Obtained value of t ( tobt )

F12: p value

To the right of the cells in column F mentioned above, type into Column G func-
tions and formulas to calculate the values, as shown in Figure 9.10:

G9: =G5-1

G10: 2.042

The test statistic for a related-samples t test estimates the number of standard devia-
tions in a t distribution that a sample mean difference falls from the population mean 
difference stated in the null hypothesis. Similar to the other t tests, the mean differ-
ence is placed in the numerator, and the estimate of the standard error is placed in the 
denominator. By placing the mean differences in the numerator and the estimated 
standard error for difference scores in the denominator, we obtain the formula for the 
test statistic for a related-samples t test:

t
M

s
D D

MD
obt =

− µ

In column G,

G11: =(G4-0)/G8

which yields

tobt =
− −

= −
0 674 0

264
2 555

.
.

.

in cell G11 in Figure 9.10b.
Excel allows us to calculate an exact p value, as shown in cell G12 in Figure 9.10a:

G12: =T.TEST(B4:B38,C4:C38,2,1)

This function requires two cell ranges of data: B4:B38 contains the times to iden-
tify change in the animate object, C4:C38 contains the times to identify change in 
the inanimate object. After those two ranges of data, the next argument required in 
the function is the number of tails, for which we specify 2. The final argument is the 
type of t test, which we specify as “paired” 1. “Paired” is the term used in Excel to cal-
culate a related-samples t test. As expected with the tobt , the p value is .015, as shown 
in cell G12 of Figure 9.10b.
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Step 4: Make a decision. To make a decision, we compare the obtained value 
to the critical value. We reject the null hypothesis if the obtained value exceeds the 
critical value. Figure 9.10 reveals that the obtained value ( tobt =− .2 555 ) exceeds the 
lower critical value; it falls in the rejection region. The decision is to reject the null 
hypothesis. If we were to report this result in a research journal, it would look some-
thing like this:

Changes to animate objects were identified significantly more quickly than 
were changes to inanimate objects, t(34) = -2.555, p = .015.

Effect Size for the Related-Samples t Test
Hypothesis testing identifies whether or not an effect exists. In Example 9.3, we con-
cluded that an effect does exist—people noticed changes to animate objects more 
quickly than they noticed changes to inanimate objects; we rejected the null hypoth-
esis. The size of this effect is determined by measures of effect size. We will compute 
effect size for Example 9.3, because the decision was to reject the null hypothesis for 
that hypothesis test. There are two measures of effect size for the related-samples t test: 
estimated Cohen’s d and proportion of variance with eta squared.

To label these calculations, in column C we enter

 F14: Estimated Cohen's d

 F15: Eta-squared (η2 )

Estimated Cohen’s d. As stated in Example 9.1 above, estimated Cohen’s d is 
most often used with the t test. When the estimated Cohen’s d is used with the related- 
samples t test, it measures the number of standard deviations that mean difference 
scores shifted above or below the population mean difference stated in the null hypoth-
esis. The larger the value of d, the larger the effect in the population. To compute 
estimated Cohen’s d with two related samples, we place the mean difference between 
two samples in the numerator and the standard deviation of the difference scores to 
estimate the population standard deviation in the denominator:

d
M
s

D

D

=

In column G,

G14: =G4/G7

which yields

d =
−

= −
0 674

1 560
0 432

.
.

.

in cell G14 of Figure 9.10b.
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We conclude that time to recognize a change in animate objects is 0.432 standard 
deviations shorter than time to recognize changes in inanimate objects. The effect 
size conventions listed in Table 9.2 show that this is a medium effect size (-0.8 < d 
< -0.2). We could report this measure with the significant t test in Example 9.3 by 
stating,

Changes to animate objects were identified significantly more quickly than 
were changes to inanimate objects, t(34) = -2.555, p < .05 (d = -0.432).

Proportion of Variance: Eta squared (ηη2 ). Another measure of effect size is 
proportion of variance, which estimates the proportion of variance in a dependent 
variable that can be explained by some treatment. In Example 9.3, this measure can 
describe the proportion of variance in the difference in recognition time (the depen-
dent variable) that can be explained by whether the changed object was animate 
or inanimate (the treatment). One measure of proportion of variance for the two- 
independent-sample t test is eta squared, η2 .

Eta squared can be expressed in a single formula based on the result of a t test:

η2
2

2=
+
t

t df

In column G,

G15: =G11^2/(G11^2+G9)

which yields

η2
2

2

2 555
2 555 34

6 528
6 528 34

161=
−

− +
=

+
=

.
.

.
.

.

in cell G15 in Figure 9.10b.
Typically, we report proportions to the hundredths place. So with rounding, we 

conclude that 16% of the variability in reaction time can be explained by whether the 
object that changed was animate or inanimate. Based on the effect size conventions in 
Table 9.2, this result indicates a medium effect size. We can report this estimate with 
the significant t test in Example 9.3 by stating,

Changes to animate objects were identified significantly more quickly than 
were changes to inanimate objects, t(34) = -2.555, p < .05 (η2 16= . ).

Confidence Intervals for  
the Related-Samples t Test
In Example 9.3, we stated a null hypothesis regarding the mean difference in a pop-
ulation. We can further describe the nature of the effect by determining where the 
effect is likely to be in the population by computing the confidence intervals.
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As introduced in Learning Unit 7, there are two types of estimates: a point esti-
mate and an interval estimate. When using two related samples, a point estimate is the 
sample mean difference score we measure. The interval estimate, often reported as a 
confidence interval, is stated within a given level of confidence, which is the likelihood 
that an interval contains an unknown population mean.

To illustrate confidence intervals for the related-samples t test, we will revisit 
Example 9.3, and using the same data, we will compute the confidence intervals at a 
95% level of confidence using the three steps to estimation first introduced in Example 
9.1. For a related-samples t test, the estimation formula is

M t sD MD± ( )

Step 1: Compute the sample mean and standard error. The mean differ-
ence, which is the point estimate of the population mean difference, is equal to 
MD = −0 674. . The estimated standard error for difference scores sMD = 0 264. .

Step 2: Choose the level of confidence and find the critical values at that 
level of confidence. In this example, we want to find the 95% confidence interval, so 
we choose a 95% level of confidence. Remember, in a sampling distribution, 50% of the 
mean differences fall above the mean difference we selected in our sample, and 50% 
fall below it. We are looking for the 95% of mean differences that surround the mean 
difference we selected in our sample. A 95% CI corresponds to a two-tailed test at a .05 
level of significance. To find the critical value at this level of confidence, we look in the 
t table in Table C.2 in Appendix C. The degrees of freedom are 34 ( df nD= −1)  for two 
related samples. The critical value for the interval estimate is t = 2.042.

Step 3: Compute the estimation formula to find the confidence limits 
for a 95% confidence interval. In column G,

F17: t sMD( )
F18: 95% CI upper limit

F19: 95% CI lower limit

Because we are estimating the mean difference between two related samples from a 
population with an unknown variance, we use the M t sD MD± ( )  estimation formula.

To compute the formula, multiply t by the estimated standard error for difference 
scores. In column G,

G17: =G10*G8

which yields

t sMD( ) = ( ) =2 42 264   539. . .0 0 0

in cell G17 of Figure 9.10b.
Add 0. 539 to the sample mean difference to find the upper confidence limit, and 

subtract 0.539 from the sample mean to find the lower confidence limit. In column G,
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G18: =G4+G17

G19: =G4-G17

which yields

M t sD MD+ ( ) = − + = −0 674 0 539 0 135. . .

in cell G18 of Figure 9.10b, and 

M t sD MD− ( ) = − − = −0 674 0 539 1 212. . .

in cell G19 of Figure 9.10b.
As shown in Figure 9.11, the 95% confidence interval in this population is between 

-1.212 seconds and -0.135 seconds. We can estimate within a 95% level of confidence 
that people take more time to notice a change in an inanimate object than they take 
to notice a change in an animate object.

Computing the Related-Samples  
t Test Using the Analysis Toolpak
We can also use the Analysis ToolPak available in Excel for easy and accurate calculation. 
We will guide you through the steps to do the analysis for the related-samples t test.

Click on the Data tab, and then on the Data Analysis icon all the way to the right. 
Select “t-Test: Paired Two Sample for Means,” as shown in Figure 9.12a, which yields 
the dialog box in Figure 9.12b. For Variable 1, we select reaction times when the ani-
mate object changed, cells B3 through B38, which includes in B3 a label for the data. 
For Variable 2, we select reaction times when the inanimate object changed, cells C3 
to C38, and include in C3 a label for the data. The Hypothesized Mean Difference is 
0. Check the Labels box so that the output contains the labels from B3 and C3. We 
keep our output on the same page by selecting Output Range and clicking in cell I1.

Clicking “OK” on the dialog box returns the output table in Figure 9.13. Notice that 
we get the same tobt  of -2.555 as in cell G11 of Figure 9.10b, and the same p value of 
.015 as in cell G12 of Figure 9.10b. The tcrit  for df = 34 in Figure 9.13 cell J14 is 2 032. .

FIGURE 9.11 ●  At a 95% CI, the mean difference in response time falls 
between -1.212 and -0.135.

95% CI −1.212 to −0.135

−2 −1.5 0 0.5−0.5−1

The point estimate is M = −0.674

−1.212 −0.135
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FIGURE 9.12 ●  Performing a one-sample t test with the Analysis ToolPak in Excel. (a) Selecting 
“t-Test: Paired Two Sample for Means” to perform a one-sample t test.  
(b) Specifying the location of the data and parameters for the t test.

FIGURE 9.13 ● Results of related-samples t test using the Analysis ToolPak.

(a)

(b)
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