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 SIX 

DEALING WITH MISSING  
OR INCOMPLETE DATA

Debunking the Myth of Emptiness

I n almost any research you perform, there is the potential for missing or 
incomplete data. Missing data can occur for many reasons: participants 

can fail to respond to questions (legitimately or illegitimately—more on that 
later), equipment and data collecting or recording mechanisms can malfunc-
tion, subjects can withdraw from studies before they are completed, and data 
entry errors can occur. In later chapters I also discuss the elimination of 
extreme scores and outliers, which also can lead to missingness.

The issue with missingness is that nearly all classic and modern statistical 
techniques assume (or require) complete data, and most common statistical 
packages default to the least desirable options for dealing with missing data: 
deletion of the case from the analysis. Most people analyzing quantitative data 
allow the software to default to eliminating important data from their analyses, 
despite that individual or case potentially having a good deal of other data to 
contribute to the overall analysis.

It is my argument in this chapter that all researchers should examine their 
data for missingness, and researchers wanting the best (i.e., the most replicable 
and generalizable) results from their research need to be prepared to deal with 
missing data in the most appropriate and desirable way possible. In this chap-
ter I briefly review common reasons for missing (or incomplete) data, compare 
and contrast several common methods for dealing with missingness, and dem-
onstrate some of the benefits of using more modern methods (and some draw-
backs of using the traditional, default methods) in the search for the best, most 
scientific outcomes for your research.
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WHAT IS MISSING OR 
INCOMPLETE DATA?

The issue before us is whether we have 
complete data from all research partici-
pants on all variables (at all possible 
time points, if it is a repeated-measures 
design). If any data on any variable 
from any participant is not present, the 
researcher is dealing with missing or 
incomplete data. For the purposes of 
the rest of this chapter, we use the term 
missing to indicate that state of affairs. 
In many types of research, it is the case 
that there can be legitimate missing 
data. This can come in many forms, for 
many reasons. Most commonly, legiti-
mate missing data is an absence of data 
when it is appropriate for there to be an 
absence. Imagine you are filling out a 
survey that asks you whether you are 
married,1 and if so, how long you have 
been married. If you say you are not 
married, it is legitimate for you to skip 
the follow-up question on how long 
you have been married. If a survey 
asks you whether you voted in the last 
election, and if so, what party the can-
didate was from, it is legitimate to skip 
the second part if you did not vote in 
the last election.

In medical research, it is possible 
that whatever treatment a participant is 
receiving has eliminated the condition 

that person was getting treated for (since I am not a medical doctor, I will call 
that “being cured”). In a long-term study of people receiving a particular type 
of treatment, if you are no longer receiving treatment because you are cured, 

Is emptiness meaninglessness?

Modern researchers seem to view 
missing data as empty, useless, a 
void that should have been filled 
with information, a thing without 
pattern, meaning, or value.

Yet the ancient Greeks saw 
potential in emptiness. The Greek 
goddess Chaos (Khaos) represented 
unfilled space (initially the unfilled 
space between the earth and the 
heavens in the creation mythology), 
much as a blank canvas represents 
unfilled potential to an artist or a 
blank page to a writer. And ancient 
Olmec, Indian, and Arabic 
mathematicians saw usefulness in 
the mathematical quantification of 
nothing, what we now call zero 
(Colebrooke, 1817; Diehl, 2004).

The modern computer era is built 
upon use of 0s and 1s as indicators 
of important states, both meaningful 
and critical to the functioning of 
devices that are now ubiquitous. Just 
as our ancestors saw usefulness and 
information in absence, I propose to 
demonstrate that missingness can not 
only be informative, but in certain 
circumstances can also be filled with 
meaning and that those with missing 
data do not need to be banished 
from our analyses but rather can 
contribute to a more complete and 
accurate understanding of the 
population about which we wish to 
draw conclusions.
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that might be a legitimate form of missing data. Or perhaps you are following 
employee satisfaction at a company. If an employee leaves the company (and 
thus is no longer an employee) it seems to me legitimate that person should no 
longer be responding to employee satisfaction questionnaires.

Large data sets, especially government data sets, are full of legitimately 
missing data, and researchers need to be thoughtful about handling this issue 
appropriately (as I hope you will be thoughtful about all issues around data 
cleaning). Note too that even in the case of legitimate missingness, missing-
ness is meaningful. Missingness in this context informs and reinforces the 
status of a particular individual and can even provide an opportunity for 
checking the validity of an individual’s responses. In cleaning the data from a 
survey on adolescent health risk behaviors many years ago, I came across 
some individuals who indicated on one question that they had never used ille-
gal drugs, but later in the questionnaire, when asked how many times they had 
used marijuana, they answered that question indicating a number greater than 
0. Thus, what should have been a question that was legitimately skipped was 
answered with an unexpected number. What could this mean? One possibility 
is that the respondent was not paying attention to the questions and answered 
carelessly or in error. Another possibility is that the initial answer (have you 
ever used illegal drugs) was answered incorrectly. It also is possible that some 
subset of the population did not include marijuana in the category of illegal 
drugs—an interesting finding in itself and one way in which researchers can 
use data cleaning to improve their subsequent research.

Legitimate missing data can be dealt with in different ways. One common 
way of dealing with this sort of data could be using analyses that do not require 
(or can deal effectively with) incomplete data. These include things like hier-
archical linear modeling (HLM) (Raudenbush & Bryk, 2002) or survival 
analysis.2 Another common way of dealing with this sort of legitimate missing 
data is adjusting the denominator (an important concept introduced in Chapter 
3). Again taking the example of the marriage survey, we could eliminate non-
married individuals from the particular analysis looking at length of marriage, 
but would leave nonmarried respondents in the analysis when looking at issues 
relating to being married versus not being married. Thus, instead of asking a 
slightly silly question of the data—“How long, on average, do all people, even 
unmarried people, stay married?”—we can ask two more refined questions: 
“What are the predictors of whether someone is currently married?” and  
“Of those who are currently married, how long on average have they been 
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married?” In this case, it makes no sense to include nonmarried individuals in 
the data on how long someone has been married.

This example of dealing with legitimately missing data is relatively 
straightforward and mostly follows common sense. The best practice here is 
to make certain the denominator (the sample or subsample) is appropriate for 
the analysis. Be sure to report having selected certain parts of your sample for 
specific analyses when doing so. In the case of legitimate missing data, it is 
probably rare that a researcher would want to deal with it by imputing or sub-
stituting a value (as we discuss for illegitimately missing data below), as that 
again changes the research question being addressed to “If everyone was mar-
ried, how long, on average, would they stay married?” That probably is not 
something that makes a tremendous amount of sense.

Illegitimately missing data is also common in all types of research.  
Sensors fail or become miscalibrated, leaving researchers without data until 
that sensor is replaced or recalibrated. Research participants choose to skip 
questions on surveys that the researchers expect everyone to answer. Partici-
pants drop out of studies before they are complete. Missing data also, some-
what ironically, can be caused by data cleaning. It is primarily this second type 
of missing data that I am most concerned with, as it has the potential to bias 
the results.

Few authors seem to explicitly deal with the issue of missing data, despite 
its obvious potential to substantially skew the results (Cole, 2008). For exam-
ple, in a recent survey my students and I performed of highly regarded journals 
from the American Psychological Association, we found that more than one-
third (38.89%) of authors discussed the issue of missing data in their articles 
(Osborne, Kocher, & Tillman, 2011). Do those 61% who fail to report any-
thing relating to missing data have complete data (rare in the social sciences, 
but possible for some authors), do they have complete data because they 
removed all subjects with any missing data (undesirable, and potentially bias-
ing the results, as we discuss next), did they deal effectively with the missing 
data and fail to report it (less likely, but possible), or did they allow the statis-
tical software to treat the missing data via whatever the default method is, 
which most often leads to deletion of subjects with missing data? If our survey 
is representative of researchers across the sciences, we have cause for concern. 
Our survey found that of those researchers who did report something to do 
with missing data, most reported having used the classic methods of listwise 
deletion (complete case analysis) or mean substitution, neither of which are 



Chapter 6  Dealing With Missing or Incomplete Data 109

particularly effective practices (Schafer & Graham, 2002), as I demonstrate 
below. In only a few cases did researchers report doing anything constructive 
with the missing data, such as estimation or imputation. And in no case did we 
find that researchers analyzed the missingness to determine whether it was 
missing completely at random (MCAR), missing at random (MAR), or miss-
ing not at random (MNAR). This suggests there is a mythology in quantitative 
research that (a) individuals with incomplete data cannot contribute to the 
analyses, and that (b) removing them from the analyses is an innocuous action, 
which is only justified if you believe that missing data is missing completely 
at random (probably not the most common state).

CATEGORIES OF MISSINGNESS

When exploring missing data, it is important to come to a conclusion about the 
mechanism of missingness—that is, the hypothesized reason for why data are 
missing. This can range from arbitrary or random influences to purposeful 
patterns of nonresponse (e.g., most women in a study refuse to answer a ques-
tion that is offensive or sensitive to women but that does not affect men in the 
same way).

Determination of the mechanism is important. If we can infer the data are 
missing at random (i.e., MCAR or MAR), then the nonresponse is deemed 
ignorable. In other words, random missingness can be problematic from a 
power perspective (in that it often reduces sample size or degrees of freedom 
for an analysis), but it would not potentially bias the results. However, data 
missing not at random (MNAR) could potentially be a strong biasing influence 
(Rubin, 1976).

Let us take an example of an employee satisfaction survey given to school-
teachers in a local district as an example of MCAR, MAR, and MNAR.  
Imagine that in September all teachers are surveyed (X), and then in January 
teachers are surveyed again (Y). Missing completely at random (MCAR) 
would mean that missingness in January is completely unrelated to any vari-
able, including September satisfaction level, age, years of teaching, and the 
like. An example of this would be 50% of all respondents from September were 
randomly sampled to respond to the survey again in January, with all potential 
respondents completing surveys at both time points. In this case, having data 
for Y present or absent is completely explained by random selection. Put 
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another way, missingness has no systematic relation to any variable present or 
unmeasured (such as age, sex, race, level of satisfaction, years teaching).

Now imagine that this surveying was part of the school district’s initiative 
to keep teachers from leaving, and they wanted to focus on teachers with low 
satisfaction in September, perhaps with an intervention to help raise satisfaction 
of these low-satisfaction teachers. In this case, the missingness depends solely 
and completely on X, the initial score. Because the goal of the survey is to 
explore how these particular teachers fared, rather than all teachers in general, 
missingness is still considered ignorable and missing at random (MAR). If, on 
the other hand, other factors aside from initial satisfaction level were responsible 
(or partly responsible for missingness) such that perhaps only teachers whose 
satisfaction had improved responded (the teachers who continued to be substan-
tially dissatisfied may be less likely to return the survey), then the data are 
considered missing not at random (MNAR) and are not ignorable (Rubin, 1976; 
Schafer & Graham, 2002) because they may substantially bias the results. In the 
case of MNAR, the average satisfaction of the follow-up group would be 
expected to be inflated if those who were most dissatisfied had stopped respond-
ing. If missingness were related to another external factor, such as if those teach-
ers who were most dissatisfied were the most junior teachers (the teachers with 
least time in the profession), that also would qualify the missing data as MNAR.

In other words, it is only legitimate to assume that your observed data are 
representative of the intended population if data are convincingly missing at 
random or missing completely at random.3 For simplicity, I will proceed 
through the rest of the chapter focusing on MCAR versus MNAR. MAR 
(ignorable missingness) is probably more common than MCAR but MNAR is 
probably most common, and thus, MCAR is merely presented as a comparison 
point. In truth, best practices in handling missing data appear to be equally 
effective regardless of whether the data are MCAR, MAR, or MNAR.

WHAT DO WE DO WITH MISSING DATA?

To illustrate some of the effects of missing data handling, I used data from the 
Education Longitudinal Study of 2002 (Ingels et al., 2004), grade 10 cohort to 
provide an example. For these analyses, no weights were applied. The  
complete sample of 15,163 students represents our example of the population 
(the advantage here is that we know the exact parameters of the population, 
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something we often do not know). In this first example, I use the relatively 
strong correlation between math and reading achievement scores (BYTX-
MIRR, BYTXRIRR), which produces what we define as the “population” 
correlation estimate (ρ) of .77, as indicated in Table 6.1 (row #1). (See also 
Figure 6.3 on page 134.)

Data Missing Completely at Random (MCAR)

To simulate MCAR situations, 20% of mathematics scores were randomly 
selected to be identified as missing. As a confirmation of the randomness of 
the missingness, two analyses were performed. First, as Table 6.1 shows, there 
was no mean difference in reading IRT scores between the missing and non-
missing groups (F(1, 15161) = 0.56, p < .45, η2 = .0001). Second, there was no 
correlation between the missingness variable and any other substantive or 
ancillary variable (e.g., socioeconomic status, standardized reading IRT 
scores; all r(15,163) .002 to .006, p < .57 to .79). Another test of randomness was 
a logistic regression predicting missingness (0 = not missing, 1 = missing) 
from all other variables (math, reading, and socioeconomic status). When all 
three variables were in the equation, the overall equation was not significant 
(p < .47) and all 95% confidence intervals for the odds ratios for the three 
variables included 1.00, indicating no significant relationship between miss-
ingness and any of the three variables.4 Finally, another test of randomness is 
to perform an ANOVA to see if individuals with missing data on one variable 
are significantly different on other, similar variables (in this case, reading 
achievement). As you can see in Table 6.1, there is no significant difference in 
reading achievement between those with missing data on math achievement 
and those with valid math scores. Although not definitive, this sort of analysis 
in your data can give support to an inference of randomness or nonrandomness 
regarding the missing data.

Data Missing Not at Random—Low Scoring  
Students More Likely to Be Missing (MNAR-Low)

To simulate one type of MNAR (labeled MNAR-low), cases at or below 
the 30th percentile on the math achievement test were given a 80% chance  
of being randomly labeled as missing on the math test, cases between the  
30th and 50th percentile on the math test were given a 50% chance of being 
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randomly labeled as missing, and those over the 50th percentile on the math test 
were only given a 1% chance of being labeled as missing on the math test. This 
should simulate a highly biased situation where the best-performing students  
are more likely to respond to an item than the worst-performing students.  
As expected, MNAR-low produced an upwardly biased estimate of average 
performance—overestimating the mean performance due to more missing data 
from lower-performing students and slightly underestimating the standard 
deviation, also expected in this case due to less dispersion at the lower extreme 
of the distribution. As expected, achievement test scores were significantly cor-
related with missingness in this case (r(15,163) = -.51 and -.66 for reading and math 
achievement, respectively, both p < .0001) as was socioeconomic status (r(15,163) 
= -.28, p < .0001). Furthermore, logistic regression predicting missingness from 
achievement and socioeconomic status found all three variables were significant 
predictors of MNAR-low (all p < .0001), indicating that those with lower 
achievement (or SES) were more likely to be missing (as expected). Finally, as 
Table 6.1 shows, there were substantial mean differences in reading achievement 
between those with missing scores and those with valid math scores.

Data Missing Not at Random—Students at the  
Extremes More Likely to Be Missing (MNAR-Extreme)

A second type of MNAR (MNAR-extreme) was simulated by giving 
those students below the 30th percentile and above the 70th percentile on the 
math achievement test an 80% chance of being randomly identified as missing 
on the math test. Those in the center of the distribution were given only a 5% 
chance of being labeled as missing on the math test (Acock, 2005). This 
should have the effect of increased nonrandom missingness without substan-
tially skewing the population average estimates.

As expected, MNAR-extreme produced the desired effects. Because the 
highest and lowest 30% of the students were more likely to be missing than the 
middle 40% (i.e., the missing data was symmetrically, but not randomly distrib-
uted), the distribution should closely match the mean of the original population, 
with dramatically reduced variance, and little or no difference in missing or 
nonmissing scores. As Table 6.1 shows, that is exactly what occurred. The  
average for MNAR-extreme closely approximates the population mean, under-
estimates the standard deviation, and produced significant, but unimportant 
differences between the two groups (an eta-squared of .001 is an extremely 
small effect size). Furthermore, we would not expect significant correlations 
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between missingness and achievement or socioeconomic status, and correla-
tions ranged from r(15,163) = -.03 to .02. Finally, though the logistic regression 
indicated that missingness in this case was significantly related to reading 
achievement (Odds ratio = 0.99, p < .0001) and socioeconomic status (Odds 
ratio = 1.10, p < .0001), the odds ratios are close to 1.00, indicating a small 
effect size that is only significant by virtue of having more than 15,000 degrees 
of freedom. Thus, I can argue that while MNAR-extreme was decidedly non-
random missingness, it did produce a largely symmetrical distribution.

Data Missing Not at Random That 
Inverts the Relationship Between 
Two Variables (MNAR-Inverse)

As a final challenge and test of miss-
ing data handling techniques, I created an 
extremely biased sampling technique that 
virtually eliminated those with both high 
reading and math scores, and those with 
both low reading and math scores, to have 
the effect of reversing the relationship 
between reading and math achievement 
(this is described more thoroughly in 
Appendix A of this chapter and also is 
available on the book’s website). (See also 
Figure 6.4 on page 135.) By selectively 
sampling only those students on the 
downward diagonal, this produced a sam-
ple of almost N = 5,000 students that had 
a negative correlation (r(4,994) = -.20).

Finally, MNAR-inverse also had 
the desired effect of producing a  
sample that at a glance does not look 
problematic. As Table 6.1 (5th row) 
shows, this MNAR-inverse sample is 
not substantially different from the 
other samples in mean math achieve-
ment (although the standard deviation 

Complete case analysis can lead to 
incomplete understanding.

Stuart, Azur, Frangakis, and Leaf 
(2009) give some interesting 
examples of how looking at only 
cases with complete data can lead 
to incomplete or inaccurate findings 
in the context of a national health 
survey. In one example, eliminating 
cases with missing data could lead 
us to conclude that individuals who 
start smoking earlier in life are more 
emotionally strong and less 
functionally impaired than 
individuals who started smoking 
later in life—a finding contrary to 
common sense and decades of 
research. They also found that under 
complete case analysis, those who 
drink more have fewer internalizing 
problems (e.g., depression, anxiety), 
another incongruous finding. 
Fortunately, after appropriate 
handling of missing data, these 
relationships were more consistent 
with the literature.

These real-life examples inspired 
me to create the fourth condition, 
MNAR-inverse because missing data 
apparently can lead to completely 
wrong conclusions in the real world.
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underestimates the population variablility), and the shape of the distribution is 
not substantially different from the MNAR-extreme distribution. Furthermore, 
there is little difference between those missing and not missing on the reading 
achievement score (again, a very small effect size of eta-squared = .001). Other 
analyses showed no important correlations between missingness and achieve-
ment or socioeconomic status (r(15,163) ranged from .03 to .04), and a logistic 
regression predicting missingness from the same three variables showed only a 
small effect for socioeconomic status (Odds ratio = 1.08, p < .0001) indicating 
that those from more affluent families were more likely to be missing. If a 
researcher was unaware that the population correlation for these two variables 
should be .77, none of these minor effects hint at how biased this sample is due 
to nonrandom missingness—yet this example highlights the importance of deal-
ing effectively with missing data.

THE EFFECTS OF LISTWISE DELETION

Traditional methods of dealing with missing data (and the default for many 
statistical packages) is to merely delete any cases with missing values on any 
variable in the analysis. A special case of this, called pairwise deletion or avail-
able case analysis, uses those cases with complete data on only those variables 
selected for a particular analysis. This means that the sample being analyzed can 
change depending on which variables are in the analysis, which could be prob-
lematic regarding replicability and increase the odds of errors of inference. 
Neither case is particularly desirable (Cole, 2008; Schafer & Graham, 2002). 
When data are MCAR, estimates are not biased, but under the more common 
MAR or MNAR conditions, misestimation and errors can result (Stuart, et al., 
2009). Again, referring to Table 6.1, a simple example of the correlation between 
reading and math achievement test scores demonstrates this effect nicely.

As Table 6.1 shows, the original correlation coefficient for the population was 
ρ = .77 (variance accounted for = .59). When the data are MCAR, the population 
effect is estimated almost exactly. However, when data are MNAR, estimates 
begin to stray from the population parameter. In the MNAR-low sample, what 
might look like a minor misestimation (r(12,134) = .70) is an underestimation of the 
effect size by almost 20% (coefficients of determination/percentage variance 
accounted for are .59 versus .49, a 16.9% underestimation). When the missing data 
causes a restriction of range situation (introduced in Chapter 3, showing restriction 
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of range causing attenuation of correlation coefficients) represented by the 
MNAR-extreme sample, the misestimation is even more pronounced, producing 
a correlation coefficient of r(7,578) = .61 (coefficient of determination of 0.37, which 
underestimates the population effect size by 37.29%). Finally, and most obviously, 
when the missingness is biased in a particular way, such as the MNAR-inverse 
example, it is possible that deletion of cases could lead researchers to draw the 
opposite conclusion regarding the nature of the relationship than exists in the 
population, as evidenced by the MNAR-inverse sample.

Thus, by deleting those with missing data, a researcher could be misesti-
mating the population parameters, making replication less likely (for more 
examples of this effect, see Schafer & Graham, 2002, Table 2.).

Another undesirable effect of case deletion (even under MCAR) is loss of 
power. Most researchers use analyses with multiple variables. If each variable 
has some small percentage of randomly missing data, five variables with small 
percentages of missing data can add up to a substantial portion of a sample 
being deleted, which can have deleterious effects on power (as discussed in 
Chapter 2). Combined with what is likely an underestimation of the effect size, 
power can be significantly impacted when substantial portions of the sample 
are deleted when data are not MCAR. Thus, case deletion is only an innocuous 
practice when (a) the number of cases with missing data is a small percentage 
of the overall sample, and (b) the data are demonstrably MAR.

THE DETRIMENTAL EFFECTS OF MEAN SUBSTITUTION

I have seen two types of mean substitution. In one case, an observed variable 
(e.g., number of years of marriage) is unreported, the group or overall sample 
mean is substituted for each individual with missing data. The theory is that, 
in the absence of any other information, the mean is the best single estimate 
of any participant’s score. The flaw in this theory is that if 20% of a sample is 
missing, even at random, substituting the identical score for a large portion of 
the sample artificially reduces the variance of the variable, and as the percent-
age of missing data increases, the effects of missing data become more pro-
found. These effects have been known for many decades now (Cole, 2008; 
Haitovsky, 1968), yet many researchers still view mean substitution as a via-
ble, or even progressive, method of dealing with missing data. As you will see 
below (and in Figure 6.1), mean substitution can create more inaccurate popu-
lation estimates than simple case deletion when data are not MCAR.
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To simulate this effect as a real researcher would face it, I substituted the 
mean of the math achievement variable calculated once the missing values 
were inserted into the variable.5 As Table 6.1 shows, standard deviations are 
underestimated under MNAR situations.6 For example, even under MCAR, 
the variability of math achievement is underestimated by 10.47% when mean 
substitution is used (and the effect would become more substantial as a larger 
percentage of the sample were missing), although the estimate of the mean is 
still accurate. In this case, the correlation effect size also is underestimated by 
20.34% (coefficient of determination = 0.59 versus 0.47) just through virtue 
of 20% of the sample being MCAR and substituting the mean to compensate. 
Note also that mean substitution under MCAR appears to be less desirable 
than case deletion. In Figure 6.1, comparing MCAR with deletion and MCAR 
with mean substitution, you can see that the estimates of the population are 
more accurate when the missing cases are deleted.
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To explore the errors mean substitution made, even under MCAR, the 
difference between the mean substituted and the original score was calculated 
and is presented in Figure 6.2. As you might expect from randomly missing 
data, the average error is almost 0 (-0.17), but there is a large range (-25.54 to 
31. 15). Taking the absolute values of each error (presented in Figure 6.2), the 
average error of estimating scores via mean substitution is 9.97 with a standard 
deviation of 6.34.

The effects of mean substitution appear more dramatic under MNAR-low, 
despite being approximately the same overall number of missing cases. This 
is because the missing data in this case are likely to be low-performing stu-
dents, and the mean is a poor estimate of their performance (average error in 
this case is 16.71, standard deviation is 6.53, much larger than under MCAR). 
Thus, under MNAR-low, mean substitution produces a biased mean, substan-
tially underestimates the standard deviation by almost 33%, dramatically 
changes the shape of the distribution (skew, kurtosis), and leads to significant 
underestimation of the correlation between reading and math achievement. 
Under MNAR-low with mean substitution, the effect size for this simple cor-
relation is underestimated by 57.63% (coefficient of determination = 0.59 
versus 0.25). Note that MNAR with deletion produced better population esti-
mates than mean substitution.

The example of MNAR-extreme also exposes the flaws of mean substitu-
tion. Note that because the missing data were symmetrical, the estimate of the 

Figure 6.2   Misestimation of Math Scores Under Mean Substitution, Strong 
Imputation, MCAR
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population mean was excellent both when cases were deleted and when mean 
substitution was used. However, the case of MNAR-extreme with mean sub-
stitution produced inaccurate estimates of population variability (SD = 5.84 
versus population SD = 11.94, a 51.09% underestimation of the true variability 
in the population). Again, this is not a surprise as the average error from mean 
substitution is 13.84, standard deviation is 5.00. Furthermore, because of the 
high concentration of missing data in the tails of the distribution, the shape of 
the distribution becomes dramatically nonnormal. Finally, the effect size of the 
simple correlation between reading and math achievement scores is underesti-
mated by 76.27% (0.59 versus 0.14), a notably poorer estimation than merely 
deleting cases under MNAR-extreme.

It should be no surprise that mean substitution does little to help the situ-
ation of MNAR-inverse. The correlation is simply a complete misestimation 
of the population parameter, has high error (but not as high as the two other 
MNAR samples, interestingly), and substantially underestimates population 
variability. Thus, this type of mean substitution does not appear to be an 
acceptable practice in which researchers should engage.

Mean substitution when creating composite scores based on multi-item ques-
tionniares. The other type of mean substitution involves administration of 
psychological scales (e.g., self-esteem, depression) where there are multiple, 
highly correlated questions assessing a single construct. In the case of the 
Rosenberg SVI, for example, where internal reliability estimates are often in 
excess of .90, the theory is that it is more desirable to substitute that individu-
al’s mean for the other items rather than to discard the individual from the data 
set. Thus, the idea that significant information is contained in the other highly 
correlated answers is an intriguing one, and used to generate other estimates 
discussed below. In this case, as item intercorrelations get higher, and the 
number of items increases, the bias does not appear to be substantial (Schafer 
& Graham, 2002), but this holds true only if the scale is unidimensional. In 
other words, if a scale has multiple independent aspects or subscales (e.g., 
depression is often not considered a unitary scale, and therefore averaging all 
the items would not be appropriate) it is only legitimate to average the items 
from the subscale the missing value belongs to.7 This type of mean substitution 
is similar to imputation, discussed next, and when the imputation is based on 
strong relationships, it can be very effective. Thus, this type of mean substitu-
tion for missing scale items when internal consistency is strong and the scale 
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is unidimensional appears to be a defensible practice. Of course, measurement 
scholars will argue that there are more modern methods of dealing with this 
sort of issue, and they are correct. If you are trained in more advanced mea-
surement techniques, please use them.

THE EFFECTS OF STRONG AND  
WEAK IMPUTATION OF VALUES

Conceptually, the second type of mean substitution mentioned earlier is simi-
lar to imputation via multiple regression. It uses information available in the 
existing data to estimate a better value than the sample average, which as we 
saw in the previous section, is only effective at reducing the accuracy of the 
analysis. Essentially, imputation combines the complexity of predictive appli-
cations of multiple regression, which I think is excellently discussed in an 
article I wrote and which is freely available on the Internet (Osborne, 2000). 
In practice, assuming most variables have complete data for most participants, 
and they are strongly correlated to the variable with the missing data, a 
researcher can create a prediction equation using the variables with complete 
data, estimating values for the missing cases much more accurately than sim-
ple mean substitution.

To demonstrate this under the most ideal circumstances, I used two vari-
ables from the ELS 2002 data set that are correlated with the 10th grade math 
achievement variable that contains missing values: 12th grade math achieve-
ment (F1TXM1IR) and socioeconomic status (BYSES2). As imputation 
involves creating a regression equation based on the valid cases in a sample, 
for each simulation below I used only cases with nonmissing data to generate 
the regression equation, as a researcher faced with a real data set with missing 
data would have to do. For reference, I also calculated the regression equation 
for the population. These equations represent strong imputation, as the vari-
ance accounted for is very high (.40 to .80).

Prediction equation for population:

Math = 5.286 + 0.552(BYSES2) + 0.680(F1TXM1IR) (r2 = .80).

Prediction equation for MCAR sample:

Math = 5.283 + 0.533(BYSES2) + 0.681(F1TXM1IR) (r2 = .80).
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Prediction equation for MNAR-low sample:

Math = 9.907 + 0.437(BYSES2) + 0.617(F1TXM1IR) (r2 = .72).

Prediction equation for MNAR-extreme sample:

Math = 11.64 + 0.361(BYSES2) + 0.548(F1TXM1IR) (r2 = .63).

Prediction equation for MNAR-inverse sample:

Math = 18.224 + -0.205(BYSES2) + 0.407(F1TXM1IR) (r2 = .40).

It should not be surprising that the prediction equations became increas-
ingly less similar to the population equation (and less effective) as I moved 
from MCAR to MNAR-low to MNAR-extreme to MNAR-inverse. However, 
given the extremely high predictive power of 12th grade math achievement 
scores in predicting 10th grade math achievement (r(12,785) = .89, which has a 
coefficient of determination of 0.79), prediction even in the worst case is 
strong. The relevant question is whether these equations will produce better 
estimations than mean substitution or complete case analysis.

As Table 6.1 and Figure 6.1 show, given this strong prediction, under 
MCAR the population mean and standard deviation, as well as the distribu-
tional properties, are closely replicated. Under MNAR-low, MNAR-extreme, 
and MNAR-inverse, the misestimation is significantly reduced, and the popu-
lation parameters and distributional properties are more closely approximated 
than under mean substitution. Further, in all cases the errors of the estimates 
dropped markedly (as one might expect using such powerful prediction rather 
than mean substitution). Finally, under imputation, the estimates of the corre-
lation between reading and math achievement test scores are much closer to 
approximating the population correlation than either deletion or mean substi-
tution. This is particularly true for MNAR-inverse, where we see the true 
power of more progressive missing value handling techniques. Researchers 
using strong imputation would estimate a relationship between these two vari-
ables in the correct direction and, while underestimated, it is much closer to 
the population parameter than under any other technique.

Unfortunately, it is not always the case that one has another variable with 
a correlation of this magnitude with which to predict scores for missing values. 
Thus, to simulate a weaker prediction scenario, I used other variables from  
the same data set: BYSES2 (socioeconomic status), BYRISKFC (number of 
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academic risk factors a student exhibits), and F1SEX (1 = male, 2 = female). 
Collectively, these three variables represent modest predictive power, with an r 
= .49, r2 = .24, p < .0001 for the model. The predictive equations are as follows:

Prediction equation for population:

Math = 42.564 + 5.487(BYSES2) – 1.229(F1SEX) –  
2.304(BYRISKFC) (r2 = .24).

Prediction equation for MCAR sample:

Math = 42.701 + 5.468(BYSES2) – 1.241(F1SEX) – 
2.368(BYRISKFC) (r2 = .24).

Prediction equation for MNAR_low sample:

Math = 46.858 + 4.035(BYSES2) – 1.440(F1SEX) –  
1.748(BYRISKFC) (r2 = .17).

Prediction equation for MNAR_extreme sample:

Math = 40.149 + 3.051 (BYSES2) – 0.491(F1SEX) –  
1.155(BYRISKFC) (r2 = .13).

Prediction equation for MNAR_inverse sample:

Math = 40.416 + 0.548 (BYSES2) – 1.460(F1SEX) –  
0.547(BYRISKFC) (r2 = .03).

As you can see from this more realistic example (Table 6.1, and Figure 
6.1), as the imputation gets weaker, the results get closer to mean substitution. 
In this case, the prediction was generally better than simple mean substitution, 
but not as good as strong imputation. As Table 6.1 shows, under MNAR-low, 
MNAR-extreme, and MNAR-inverse conditions, the variance of the popula-
tion was misestimated, and in the case of MNAR-low, the population mean 
also was misestimated. The errors of estimation, while not as large as mean 
substitution, were still undesirably large. Finally, estimation of the population 
correlation between math and reading achievement tests were improved over 
mean substitution, but still misestimated compared to strong imputation.

So where does that leave us? Under the best circumstances, imputation 
appears to give the best results, even correcting the undesirable situation present 
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in MNAR-inverse, particularly when prediction is strong and done well. When 
done poorly, imputation can cause distortion of estimates and lead to errors of 
inference (Little & Rubin, 1987), just as complete case analysis can (Stuart  
et al., 2009). In large samples with strongly correlated variables and low rates of 
missing data, this appears to be a good option from amongst the classic tech-
niques thus far, although far more effective when data are missing at random 
than when missingness is biased in some way. However, recent research has 
shown that taking the extra effort of using advanced, modern estimation proce-
dures can have benefits for those researchers with relatively high rates of miss-
ingness. It is beyond the scope of this chapter to get into all the details of all 
these different advanced techniques, but I will briefly address one of the more 
common ones for those curious in exploring further.

MULTIPLE IMPUTATION: A MODERN  
METHOD OF MISSING DATA ESTIMATION

Multiple imputation (MI) has emerged as one of the more common modern 
options in missing data handling with the ubiquity of desktop computing 
power. Essentially, multiple imputation uses a variety of advanced tech-
niques—e.g., EM/maximum likelihood estimation, propensity score estima-
tion, or Markov Chain Monte Carlo (MCMC) simulation—to estimate missing 
values, creating multiple versions of the same data set (sort of a statistician’s 
view of the classic science fiction scenario of alternate realities or parallel 
universes) that explore the scope and effect of the missing data. These parallel 
data sets can then be analyzed via standard methods and results combined to 
produce estimates and confidence intervals that are often more robust than 
simple (especially relatively weak) imputation or previously mentioned meth-
ods of dealing with missing values (Schafer, 1997, 1999).

When the proportion of missing data is small and prediction is good, single 
imputation described above is probably sufficient, although as with any predic-
tion through multiple regression, it “overfits” the data, leading to less generaliz-
able results than the original data would have (Osborne, 2000, 2008; Schafer, 
1999).8 The advantage of MI is generalizability and replicability—it explicitly 
models the missingness and gives the researcher confidence intervals for esti-
mates rather than trusting to a single imputation. Some statistical software 
packages are beginning to support MI (e.g., SAS, R, S-Plus, SPSS—with  
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additionally purchased modules and standalone software such as that available 
from Joseph Schafer at http://www.stat.psu.edu/~jls/software.html). Finally, 
and importantly, some MI procedures do not require that data be missing at 
random (e.g., in SAS there are several options for estimating values depending 
on the assumptions around the missing data). In other words, under a worst-
case scenario of a substantial portion of missing data that is due to some sig-
nificant bias, this procedure should be a good alternative (Schafer, 1999).

I used SAS’s PROC MI procedure as it is relatively simple to use (if you 
are at all familiar with SAS)9 and has the nice option of automatically combin-
ing the multiple parallel data sets into one analysis. For this analysis, I pre-
pared a data set that contained the math and reading achievement test scores, 
as well as the three variables used for weak imputation (sex of student, socio-
economic status, and risk factors), and used the SAS defaults of EM estima-
tion with five parallel data sets.

The traditional view within multiple imputation literature has been that 
five parallel data sets is generally a good number, even with high proportions 
of missing data. More recent studies suggest that 20 should be a minimum 
number of iterations (Graham, Olchowski, & Gilreath, 2007). In truth, with 
software that can perform MI automatically, there is no reason not to do more 
iterations. But in the case of this analysis, five parallel data sets achieved a 
relative efficiency of 96%, a good indicator. For illustrative purposes, Table 
6.2 shows the five different imputations.

As you can see in Table 6.2 (and Figure 6.1), even using the weak 
relationships between the variables from the weak imputation example, the 
results are much better than the simple weak imputation (closer to strong 
imputation) and remarkably consistent. And the variance of the population, 
the shape of the variable distribution, and the estimation of the correlation 
between the two variables of interest are estimated much more accurately 
than any other method save having an extremely highly correlated variable 
to help with imputation. These estimates would then be combined to create 
a single estimate of the effect and confidence interval around that effect. 
In this case, the effect was so consistent that step was not necessary for this 
purpose.

Can multiple imputation fix the highly biased missingness in MNAR-inverse? As 
a final test of the power of MI, Table 6.3 shows the 20 EM imputations I per-
formed to get a relative efficiency of 98% on the MNAR-inverse data.10 By 
analyzing the 20 imputations through PROC MI ANALYZE, SAS provides the 
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Table 6.2   Example of Multiple Imputation Using Sas Proc MI and 
Weak Predictors Only, MNAR-Extreme Missingness Pattern

 
 
 
 
N

 
Mean 
Math 
IRT 

Score

 
SD 

Math 
IRT 

Score

Skew, 
Kurtosis

Math 
IRT 

Score

 
Correlation 

With 
Reading 

IRT Score

 
 

Effect 
Size 
(r2)

Original 
Data—
“Population”

15,163 38.03 11.94 -0.02,
-0.85

.77 .59

Complete 
Case 
Analysis

 7,578 38.14  8.26 -0.01,  
 0.89

.61* .37

Mean 
Substitution

15,163 38.14  5.84 -0.02,
 4.77

.38* .14

Strong 
Imputation

13,912 38.59  9.13 -0.05, 
-0.53

.73* .53

Weak 
Imputation

13,489 38.34  6.56 -0.10,
 2.56

.52* .27

EM Estimation

Imputation 1 15,163 38.07  8.82 -0.03
 0.16

.67* .45

Imputation 2 15,163 37.90  8.79 -0.04
 0.13

.68* .46

Imputation 3 15,163 37.97  8.81 -0.03
 0.15

.68* .46

Imputation 4 15,163 38.07  8.80 -0.02
 0.15

.67* .45

Imputation 5 15,163 37.95  8.85 -0.02
 0.13

.68* .46

Markov Chain Monte Carlo Estimation

Imputation 1 15,163 37.94  8.80 -0.03,
 0.19

.68* .46

Imputation 2 15,163 38.01  8.80 -0.02,
 0.15

.67* .45

(Continued)
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average of the estimate, the standard error of the estimate, 95% confidence inter-
val for the estimate, and more. In this case, the 20 iterations produced an average 
standardized regression coefficient (identical to correlation in this example) of 
0.51, with a standard error of 0.00982, a 95% confidence interval of 0.49 to 0.52.

Ultimately, multiple imputation (and other modern missing value estima-
tion techniques) are increasingly accessible to average statisticians and there-
fore represents an exciting frontier for improving data cleaning practice. As 
the results in Tables 6.2 and 6.3 show, even with only modestly correlated 
variables and extensive missing data rates, the MI techniques demonstrated 
here gave superior results to single, weak imputation for the MNAR-extreme 
and MNAR-inverse missingness patterns. These represent extremely challeng-
ing missingness issues often not faced by average researchers, but it should be 
comforting to know that appropriately handling missing data, even in 
extremely unfortunate cases, can still produce desirable (i.e., accurate, repro-
ducible) outcomes. MI techniques seem, therefore, to be vastly superior to any 
other, traditional technique. Unfortunately, no technique can completely 
recapture the population parameters when there are such high rates of missing-
ness, and in such a dramatically biased fashion. But these techniques would at 
least keep you, as a researcher, on safe ground concerning the goodness of 
inferences you would draw from the results.

MISSINGNESS CAN BE AN  
INTERESTING VARIABLE IN AND OF ITSELF

Missing data is often viewed as lost, an unfilled gap, but as I have demon-
strated in this chapter, it is not always completely lost, given the availability 

Imputation 3 15,163 38.01 8.93 -0.03,
 0.07

.69* .47

Imputation 4 15,163 37.98 8.80 -0.04,
 0.13

.68* .46

Imputation 5 15,163 37.92 8.88 -0.02,
 0.16

.68* .46

Note. * p < .0001

(Continued)
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N

Correlation With 
Reading IRT Score

 
Effect Size (r2)

Original Data—
“Population”

15,163 .77 .59

Complete Case 
Analysis

 4,994 -.20* .04

Mean 
Substitution

15,163 -.06* .004

Strong Imputation 13,521 .61* .37

Weak Imputation 12,977 .02 .00

Markov Chain Monte Carlo Estimation

Imputation 1 15,163 .51* .28

Imputation 2 15,163 .51* .28

Imputation 3 15,163 .49* .25

…

Imputation 18 15,163 .50* .25

Imputation 19 15,163 .50* .25

Imputation 20 15,163 .51* .27

Note. * p < .0001

Table 6.3   MI Estimation for MNAR-Inverse Using Weak Predictor, 
MCMC Estimation

of other strongly correlated variables. Going one step farther, missingness 
itself can be considered an outcome itself, and in some cases can be an inter-
esting variable to explore. There is information in missingness. The act of 
refusing to respond or responding in and of itself might be of interest to 
researchers, just as quitting a job or remaining at a job can be an interesting 
variable. I always encourage researchers to create a dummy variable, repre-
senting whether a person has missing data or not on a particular variable, and 
do some analyses to see if anything interesting arises. Aside from attempting 
to determine if the data are MCAR, MAR, or MNAR, these data could yield 
important information.
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Imagine two educational interventions designed to improve student 
achievement, and further imagine that in one condition there is much higher 
dropout than in the other condition, and further that the students dropping out 
are those with the poorest performance. Not only is that important information 
for interpreting the results (as the differential dropout would artificially bias 
the results), but it might give insight into the intervention itself. Is it possible 
that the intervention with a strong dropout rate among those most at risk indi-
cates that the intervention is not supporting those students well enough? Is it 
possible that intervention is alienating the students in some way, or it might be 
inappropriate for struggling students?

All of this could be important information for researchers and policymak-
ers, but many researchers discard this potentially important information. 
Remember, you (or someone) worked hard to obtain your data. Do not discard 
anything that might be useful!

SUMMING UP: WHAT ARE BEST PRACTICES?

This chapter ended up being a longer journey than I had intended. The more I 
delved into this issue, the more I found what (I thought) needed to be said, and 
the more examples needed to be explored. There are some very good books by 
some very smart people dealing solely with missing data (e.g., Little & Rubin, 
1987; Schafer, 1997), and I have no wish to replicate that work here. The goal 
of this chapter was to convince you, the researcher, that this is a topic worthy 
of attention, that there are good, simple ways to deal with this issue, and that 
effectively dealing with the issue makes your results better.

Because we often gather data on multiple related variables, we often 
know (or can estimate) a good deal about the missing values. Aside from 
examining missingness as an outcome itself (which I strongly recommend), 
modern computing affords us the opportunity to fill in many of the gaps with 
high-quality data. This is not merely “making up data” as some early, misin-
formed researchers claimed. Rather, as my examples show, the act of estimat-
ing values and retaining cases in your analyses most often leads to more rep-
licable findings as they are generally closer to the actual population values 
than analyses that discards those with missing data (or worse, substitutes 
means for the missing values). Thus, using best practices in handling missing 
data makes the results a better estimate of the population you are interested in. 
And it is surprisingly easy to do, once you know how.
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Thus, it is my belief that best practices in handling missing data include 
the following.

 • First, do no harm. Use best practices and careful methodology to mini-
mize missingness. There is no substitute for complete data11 and some 
careful forethought can often save a good deal of frustration in the data 
analysis phase of research.

 • Be transparent. Report any incidences of missing data (rates, by vari-
able, and reasons for missingness, if possible). This can be important 
information to reviewers and consumers of your research and is the first 
step in thinking about how to effectively deal with missingness in your 
analyses.

 • Explicitly discuss whether data are missing at random (i.e., if there are 
differences between individuals with incomplete and complete data). 
Using analyses similar to those modeled in this chapter, you can give 
yourself and the reader a good sense of why data might be missing and 
whether it is at random. That allows you, and your audience, to think 
carefully about whether missingness may have introduced bias into the 
results. I would advocate that all authors report this information in the 
methods section of formal research reports.

 • Discuss how you as a researcher have dealt with the issue of incomplete 
data and the results of your intervention. A clear statement concerning 
this issue is simple to add to a manuscript, and it can be valuable for 
future consumers as they interpret your work. Be specific—if you used 
imputation, how was it done, and what were the results? If you deleted 
the data (complete case analysis) justify why.

Finally, as I mentioned in Chapter 1, I would advocate that all authors 
report this information in the methods section of formal research reports and 
that all journals and editors and conferences mandate reporting of this type. If 
no data is missing, state that clearly so consumers and reviewers have that 
important information as well.

FOR FURTHER ENRICHMENT

1. Download from the book’s website some of the missing data sets I discuss 
in this chapter, and see if you can replicate the results I achieved through 
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various means. In particular, I would challenge you to attempt multiple 
imputation.

2. Choose a data set from a previous study you conducted (or your advisor 
did) that had some missing data in it. Review how the missing data was 
handled originally. (I also have another data set online that you can play 
with for this purpose.)

a. Conduct a missingness analysis to see if those who failed to respond 
were significantly different than those who responded.

b. Use imputation or multiple imputation to deal with the missing data.
c. Replicate the original analyses to see if the conclusions changed.
d. If you found interesting results from effectively dealing with missing-

ness, send me an e-mail letting me know. I will gather your results 
(anonymously) on the book’s website, and may include you in future 
projects.

3. Find a data set wherein missing data were appropriately dealt with (i.e., 
imputation or multiple imputation). Do the reverse of #2, above, and 
explore how the results change by instead deleting subjects with missing 
data or using mean substitution.

APPENDIXES

Appendix A: SPSS Syntax for Creating Example Data Sets

If you are interested in the details of how I created these various missing 
data sets, I am including the SPSS syntax. Also, because the MNAR-inverse 
data set is a particularly odd one (and one I am particularly proud of), I include 
scatterplots of the data points prior to and after missingness was imposed.

*********************************************.
***missing NOT at random- lower scores more likely 

to be missing
**************************************.
if (bytxmirr< 30.725) prob2=.80.
if (bytxmirr ge 30.725 and bytxmirr < 38.13) 

prob2=0.50.
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if (bytxmirr ge 38.13) prob2=0.01.
execute.
COMPUTE missing2=RV.BINOM(1,prob2).
EXECUTE.
compute math2=bytxmirr.
do if (missing2=1). 
compute math2=-9.
end if.
recode math2  (-9=sysmis).
execute.
*********************************************.
***missing NOT at random- lower scores and higher 

scores more likely to be missing
**************************************.
if (bytxmirr< 30.725) prob3=.80.
if (bytxmirr ge 30.725 and bytxmirr < 45.74) 

prob3=0.05.
if (bytxmirr ge 45.74) prob3=0.80.
execute.
COMPUTE missing3=RV.BINOM(1,prob3).
EXECUTE.
compute math3=bytxmirr.
do if (missing3=1). 
compute math3=-9.
end if.
recode math3  (-9=sysmis).
execute.
*********************************************.
***missing NOT at random- inverted relationship
**************************************.
compute prob4=0.001.
compute missing4=0.
if (bytxmirr<38.13 and bytxrirr<20.19) prob4=.99.
if (bytxmirr<34.55 and bytxrirr<23.75) prob4=.99.
if (bytxmirr<30.73 and bytxrirr<27.29) prob4=.99.
if (bytxmirr<26.47 and bytxrirr<33.69) prob4=.99.
if (bytxmirr<21.48 and bytxrirr<36.65) prob4=.99.
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if (bytxmirr>34.55 and bytxrirr>39.59) prob4=.99.
if (bytxmirr>38.13 and bytxrirr>36.65) prob4=.99.
if (bytxmirr>41.92 and bytxrirr>33.69) prob4=.99.
if (bytxmirr>45.75 and bytxrirr>30.61) prob4=.99.
if (bytxmirr>49.41 and bytxrirr>27.29) prob4=.99.
COMPUTE missing4=RV.BINOM(1,prob4).
EXECUTE.
compute math4=bytxmirr.
do if (missing4=1). 
compute math4=-9.
end if.
recode math4 (-9=sysmis).
execute.

Figure 6.3  Original Relationship Between Math and Reading Score
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Figure 6.4   Inverse Relationship Between Math and Reading Score 
Creating MNAR-Inverse

R
ea

d
in

g
 IR

T
 E

st
im

at
ed

 N
u

m
b

er
 R

ig
h

t

Math4

50.000

50.00 60.00 70.00

40.000

40.00

30.000

30.00

20.000

20.00

10.000

10.00

Appendix B: SAS Syntax for Performing Multiple Imputation

This SAS Syntax was used to generate multiple imputation data sets, 
analyze them, and report summary statistics.

proc MI  data=MNAR_EXT_NEW out=work.MNAREXT_MIout1;
mcmc chain=single impute=full initial=em nbiter=200 

niter=100;
Run;
proc reg  data=work.mnarext_miout1 outest=MNAR_

ext_est covout;
  model BYTXRIRR=math3;
  by _imputation_;
  run;
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proc mianalyze data=work.mnar_ext_est;
modeleffects intercept math3;
run;

NOTES

 1. And, of course, if this was good research, I would assume follow-up ques-
tions would ask if the respondent is in a committed, long-term relationship as well to 
capture the effect of being in a stable relationship with another person regardless of 
whether that relationship was technically an officially recognized marriage. I leave that 
to all the relationship researchers out there to figure out—I am just a humble quaint guy 
trying to help clean data.

 2. Which can deal with issues like participants leaving the study (right-censored 
or truncated data) or entering the study at a particular point (left-censored or truncated 
data).

 3. Once again, let us be clear that values that are “out of scope” or legitimately 
missing, such as nonsmokers who skip the question concerning how many cigarettes 
are smoked a day, are not considered missing and are not an issue (Schafer & Graham, 
2002). In this example, let us imagine that non–classroom teachers (e.g., guidance 
counselors, teacher assistants, or other personnel) who took the initial survey were not 
included in the follow-up because they are not the population of interest—i.e., class-
room teachers. This would be legitimate missing data.

 4. Which, honestly, is darned impressive, considering how much power there 
was in this analysis to detect any effect, no matter how small.

 5. This is important because, as a researcher, you would not know the true 
population mean, and thus would be substituting an already biased mean for the miss-
ing values.

 6. Note as well that case deletion also produces artificially reduced estimates of 
the population standard deviation under MNAR.

 7. This also is implemented relatively easily in many statistical packages. For 
example, the SPSS syntax command below creates an average called “average” by 
averaging the items if at least five of the six values are present. As mentioned in the 
text, this is only desirable if these items have good internal consistency.

Compute average=mean.5(item01, item02, 
item03, item04, item05, item06).

 8. This is a bit of an esoteric topic to many researchers, so I will be brief and 
refer you to the cited references if you are interested in further information. Almost by 
definition, multiple regression creates an ideal fit between variables based on a par-
ticular data set. It squeezes every bit of relationship out of the data that it can. This is 
called overfitting because if you take the same equation and apply it to a different 
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sample (e.g., if we were to predict math achievement from reading achievement and 
socioeconomic status in a new sample) the prediction equations are often not as accu-
rate. Thus, the relationships in a new sample are likely to be lower, leading to “shrink-
age” in the overall relationship. Thus, in the prediction literature double cross-valida-
tion is a good practice, where samples are split in two and prediction equations gener-
ated from each are validated on the other half-sample to estimate how generalizable the 
prediction equation is. Multiple imputation takes this to another level, essentially, by 
creating several different parallel analyses to see how much variability there is across 
samples as a function of the missing data estimation. A very sensible concept!

9. An excellent introduction and guide to this procedure and process is Yuan 
(2000). Though some beginning users find SAS challenging, multiple imputation 
through SAS is relatively painless and efficient, accomplished through only a few lines 
of syntax. Once programmed, the actual multiple imputation procedure that produced 
20 parallel data sets, analyzed them, and reported the summary statistics took less than 
60 seconds on my laptop. For reference, I have appended the SAS syntax used to per-
form the first multiple imputation at the end of this chapter.

10. As the proportion of data missing increases, it is sometimes desirable to 
increase the number of imputed data sets to maintain a high relative efficiency. Given 
the ease of using SAS to create and analyze these data, and the speed of modern com-
puters, there is little reason not to do so.

11. Except in certain specialized circumstances where researchers purposely 
administer selected questions to participants or use other advanced sampling tech-
niques that have been advocated for in the researching of very sensitive topics.
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