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PROBABILISTIC
NETWORK ANALYSIS

PHILIPPA PATTISON AND GARRY ROBINS

INTRODUCTION

The aim of this chapter is to describe the foun-
dations of probabilistic network theory. We re-
view the development of the field from an early
reliance on simple random graph models to the
construction of progressively more realistic mod-
els for human social networks. Hence, we show
how developments in probabilistic network mod-
els are increasingly able to inform our under-
standing of the emergence and structure of social
networks in a wide variety of settings.

SOCIAL NETWORKS

Growing numbers of social scientists from an
increasingly diverse set of disciplines are turn-
ing their attention to the study of social net-
works. The precise reasons vary, but almost
certainly, there are at least two key factors at
work. The first is an increasing recognition that
networks matter in many realms of social, po-
litical, and economic life. Networks both po-
tentiate and constrain the social interactions
that, for instance, underpin the dissemination of
knowledge, the exercise of power and influence,
and the transmission of communicable diseases.
Ignoring the structured nature of these inter-
actions often leads to erroneous conclusions

about their consequences, as social scientists
from a number of disciplines have repeatedly
pointed out (e.g., Bearman, Moody, & Stovel,
2004; Kretzschmar & Morris, 1996). The second
reason for a heightened focus on social networks
is our increasing capacity to measure, monitor,
and model social networks and their evolution
through time and hence to draw social networks
into a more general program for a quantitative so-
cial science. Probabilistic models for social net-
works have played—and will likely increasingly
play—a vital role in these developments. In this
chapter, we review the progress in attempts to de-
velop probabilistic network models and point to
areas of ongoing development.

WHAT IS DISTINCTIVE ABOUT

MODELS FOR SOCIAL NETWORKS?

At the outset, it is important to recognize that so-
cial networks pose particular challenges as far as
probability modeling is concerned. Unlike obser-
vations on a set of distinct actors, where an as-
sumption of independent observations may often
seem reasonable, social relationships are much
less plausibly regarded as independent. Rela-
tional observations may share one or more ac-
tors and hence be subject to influences such as
the goals and constraints of a particular actor.
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Alternatively, they may be linked by other rela-
tionships (e.g., the relationship between actors i
and j may be linked with the relationship be-
tween actors k and l by a relationship involving
actors j and k) and hence dependent, for example,
by virtue of competition or cooperation regard-
ing relational resources involving actors j and k.
As we see below, the development of probabilis-
tic network models began with simple models
that assumed independent relational ties, but em-
pirical researchers quickly confronted the prob-
lem that social networks appeared to deviate from
simple random structures in seemingly system-
atic ways. Hence, the story of the development
of probabilistic network models is a story of al-
ternatively probing and parameterizing progres-
sively more complex systematicities in network
structure.

NOTATION AND SOME BASIC

PROPERTIES OF GRAPHS

AND DIRECTED GRAPHS

We begin with some notations and some
important definitions, referring the reader to
Wasserman and Faust (1994); see also Bollobás
(1998) for a fuller exposition of key concepts.

Graphs and Directed Graphs

We let N = 1,2, . . . ,n be a set of network
nodes, with each node representing a social
actor. The actors are often persons but may also
be groups, organizations, or other social entities.
An observed social network may be represented
as a graph G = (N,E) comprising the node set
N and the edge set E comprising all pairs (i, j)
of distinct actors who are linked by a network
tie. The tie, or edge, (i, j) is said to be incident
with nodes i and j. In this case, the network ties
are taken to be nondirected, with no distinction
between the tie from actor i to actor j and the
tie from actor j to actor i; in other words, the
edges (i, j) and ( j, i) are regarded as indistin-
guishable. If it is desirable to distinguish these
ties—as it often is—the network may be repre-
sented instead by a directed graph (N,E) on N:
The node set is then also N, and the arc set E is
the set of all ordered pairs (i, j) such that there is

a tie from actor i to actor j. The convention of us-
ing the term edge in the case of a nonordered pair
(i.e., a nondirectional tie) and arc in the case of
an ordered pair (i.e., a directional tie) is widely
adopted by graph theorists, although network
researchers are inclined to use the term tie inter-
changeably in both cases. In many cases, by con-
vention, ties of the form (i, i), known as loops, are
excluded from consideration.

Graphs and directed graphs can be conve-
niently represented by a graph drawing. The ele-
ments of the node set N are represented by points
in the drawing, and a nondirected line connects
node i and node j if (i, j) is an edge in the edge
set E . In the case of a directed graph, an arc rep-
resented by a directed arrow is drawn from node
i to node j if (i, j) is in the arc set E . Figures 18.1
and 18.2 show examples of a graph and a directed
graph, respectively.

Order, Size, and Density

The order and size of a graph are defined to
be the number of nodes and edges, respectively;
likewise, the order and size of a directed graph
are the number of nodes and arcs, respectively.
For example, the graph in Figure 18.1 has order
17 and size 34; the directed graph in Figure 18.2
has order 37 and size 169. The size of a graph of
order n varies between 0 for an empty graph and
n(n−1)/2 for the complete graph of order n (i.e.,
the graph in which every pair of nodes is linked
by an edge). For a directed graph of order n, size
varies between 0 and n(n− 1). The density of a
graph or directed graph is a ratio of its actual size
to the maximum possible size for n nodes, and it
is in the range [0, 1]. The densities of the graph
and directed graph of Figures 18.1 and 18.2 are
0.25 and 0.13, respectively.

Adjacency Matrix

Graphs and directed graphs can be represented
by a binary adjacency matrix. For example, in the
case of a graph, we can define x to be an n×n ma-
trix with entries xi j = 1 if there is an edge between
i and j and xi j = 0 otherwise. Since xi j = 1 if and
only if x ji = 1, x is necessarily a symmetric ma-
trix. In the case of a directed graph, unit entries in
x correspond to arcs in E (i.e., xi j = 1 if and only if
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Figure 18.1 A graph on 17 nodes (mutual friendship network).

Figure 18.2 A directed graph on 37 nodes (reported collaboration network).

there is an arc from i to j, and xi j = 0 otherwise).
In this case, symmetry is not necessarily implied.
The adjacency matrix corresponding to the graph
of Figure 18.1 is shown in Table 18.1. Note that
the size of a graph is x++/2, whereas the size of a
directed graph is x++, where x++ = ∑i j xi j is the
sum of entries in the adjacency matrix.

Degree, Degree Sequence,
and Degree Distribution

The number k(i) of edges incident with a
given node i is termed its degree: k(i) = ∑ j xi j

is the sum of row i in the adjacency matrix x.
The degree sequence (k(1),k(2), . . . ,k(n)) of a
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Table 18.1 Adjacency Matrix for Graph of Figure 18.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
2 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
3 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
4 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
7 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
8 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0
9 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0
10 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0
11 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0
12 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1
13 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
17 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

graph is the sequence of the degrees of its nodes,
indexed by the labels 1,2, . . . ,n of nodes in
N. The degree distribution is (d0,d1, . . . ,dn−1),
where dk is the number of nodes in G of de-
gree k. For example, the degree distribution of the
graph in Figure 18.1 is shown in Figure 18.3. In
a directed graph, the concept of degree is more
complex, since there may be an arc directed from
node j toward a given node i or away from node i
toward node j, or there may be arcs in both direc-
tions between nodes i and j. We therefore char-
acterize each node i in a directed graph by its out-
degree outi = xi+ = ∑ j xi j, indegree ini = x+i =
∑ j x ji, and mutual degree muti = ∑ j xi jx ji.

Subgraphs and the Dyad and Triad Census

Each subset S of the node set N of a graph G =
(N,E) gives rise to an induced subgraph H of
G with node set S and edge set E ′ containing all
edges in G that link pairs of nodes in S. More gen-
erally, any graph H = (N′,E ′) is a subgraph of G
if N′ ⊆ N and E ′ ⊆ E . For example, the subgraph
induced by the node set 1, 6, 13 of the graph of
Figure 18.1 has edge set (1, 6),(1, 13),(6, 13); the
graph comprising the node set 1, 6, 13 and the
edge set (1, 6),(1, 13) is a subgraph of the graph
of Figure 18.1 but not an induced subgraph. If

every pair of nodes in the subgraph H is con-
nected by an edge, then H is said to be a clique;
for example, the subgraph induced by 2, 7, 8, 9,
10, 11 in Figure 18.1 is a clique of order 6.

A useful set of descriptive statistics for a graph
or directed graph is a summary of the form of
all of its small subgraphs. For example, the dyad
census is a count of the number of each possi-
ble type of two-node induced subgraphs, and the
triad census is the set of counts of three-node
induced subgraphs. For example, the graph of
Figure 18.1 has 102 null dyads and 34 linked
dyads; its triad census comprises 279, 322, 49,
and 30 induced three-node subgraphs with zero,
one, two, and three edges, respectively. The dyad
census and the triad census for directed graphs
are defined similarly, but the number of forms of
two-node and three-node subgraphs is greater in
the directed graph case.

Implicit in the description of the dyad and
triad census is the notion that two graphs (or sub-
graphs) can have the same form. We can make
this notion more explicit by defining an isomor-
phic mapping between graphs. Specifically, two
graphs G = (N,E) and H = (N′,E ′) are isomor-
phic if there is a one-to-one mapping ϕ from N
onto N′ such that (i, j) is an edge in E if and only
if (ϕ(i),ϕ( j)) is an edge in E ′.
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Figure 18.3 The degree distribution for the mutual friendship graph.

Paths, Reachability, and Connectedness

Social networks are often important to under-
stand because social processes—such as the dif-
fusion of information, the exercise of influence,
and the spread of disease—are potentiated by net-
work ties. Not surprisingly, therefore, pathlike
structures in networks that might be associated
with the flow of social processes are important
concepts. A path from node i to node j is an
ordered sequence i = i0, i1, . . . , il = j of distinct
nodes in which each adjacent pair (i j−1, i j) is
linked by an edge or an arc. The length of the
path is l. If there is a path from a node i to a node
j, then j is said to be reachable from i. If node
j is the same as node i, then the path is termed a
cycle of length l.

A geodesic from node i to another node j is
a path of minimum length, and the geodesic dis-
tance di j from node i to node j is the length of the
geodesic. If there is no path from i to j, the geo-
desic distance is infinite. The geodesic distance
di j for distinct nodes i and j is either an inte-
ger in the range from 1 to n− 1 or infinite. For
a graph, geodesic distances are symmetric, that is
d ji = di j; this is not necessarily the case however,

for directed graphs. The geodesic distribution of a
graph or directed graph is the distribution of fre-
quencies of geodesic distances—that is, the dis-
tribution of counts of the number of ordered pairs
of nodes having each possible geodesic distance.
The geodesic distribution of the graph of Figure
18.1 is presented in Figure 18.4 in the form of a
histogram. The geodesic distribution can be seen
as a useful summary of internode distances. Later,
we refer to the quartiles of this distribution as sim-
ple summary statistics for internode distances.

If each node in a graph G is reachable from
each other node, then G is connected. A compo-
nent of G is a maximal connected subgraph—that
is, a connected subgraph with vertex set W for
which no larger set Z containing W is connected.
The graph of Figure 18.1 is clearly connected.

In the case of a directed graph, we may also
define a semipath from node i to node j as an
ordered sequence i = i0, i1, . . . , il = j of distinct
nodes in which either (i j−1, i j) or (i j, i j−1) is an
arc. The length of the semipath is m. If each node
in a directed graph G is reachable from each other
node, then G is strongly connected. If there is a
semipath from each node in G to each other node,
then G is said to be weakly connected.
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Figure 18.4 Geodesic distribution for the mutual friendship graph.

SIMPLE RANDOM GRAPHS

AND DIRECTED GRAPHS

The Hungarian mathematicians Paul Erdős and
Alfréd Rényi initiated an important approach to
the study of random graph structures with a
foundational series of papers beginning in 1959
(Erdős & Rényi, 1959). They introduced two pri-
mary random graph distributions on a fixed node
set N = 1,2, . . . ,n. The probability distributions
are defined on the set of all graphs on n distinct
nodes; this set contains 2n(n−1)/2 graphs, since
each of the n(n− 1)/2 pairs of nodes may or
may not be linked by an edge. Each of the two
random graph distributions that we introduce be-
low associates a probability with every graph in
this set.

G(n, p)

In the first case, the edges of a graph are re-
garded as a set of independent Bernoulli vari-
ables. If we let Xi j denote the edge variable for
the pair of nodes i and j and p be the (uni-
form) probability that the edge between i and j
is present, then we can write Pr(Xi j = 1) = p

and, hence, Pr(Xi j = 0) = 1− p. Since the edge
variables are independent, it is then easy to write
down the probability of any particular graph H of
order n and size m:

Pr(G = H) = pm(1− p)m∗−m,

where m∗ = n(n− 1)/2 is the maximum num-
ber of edges in a graph of order n. The set of all
possible graphs of order n and their correspond-
ing probabilities is the random graph distribution
G(n, p).

In the special case where p = 0.5, the proba-
bility of each graph H on n nodes is

Pr(G = H) = (0.5)m(0.5)m∗−m = (0.5)m∗ ,

and hence, every graph on n nodes is equiproba-
ble. This distribution is often termed the uniform
random graph distribution and is denoted by U .

G(n,m)

The second random graph distribution asso-
ciates nonzero probabilities only with graphs of
order n and size m; furthermore, every such graph
is assumed to be equiprobable. Since there are
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n!/(m!(n−m)!) distinct graphs in the class, the
probability of any particular graph of order n and
size m is

Pr(G = H) = m!(n−m)!/n!.

The distribution G(n,m) may be regarded
as the uniform random graph distribution on n
nodes, conditional on the property of having m
edges. It may also be designated U | x++ = m.
More generally, we can define a conditional uni-
form random graph distribution in terms of any
graph property Q (Bollobás, 1985). If Q is a
subset of all possible graphs on n nodes, then
the distribution U | Q assigns equal probabilities
(viz., 1/ | Q |) to all graphs in the subset Q and
zero probability to all graphs not in Q. We term
U | Q the uniform random graph distribution con-
ditional on Q.

Some Results for Simple Random Graphs

The field of random graphs in G(n, p) and
G(n,m) has grown rapidly since its inception.
Much work has explored the features of vari-
ous random graph classes, particularly as n be-
comes large, and the way in which these features
change, often very rapidly, as a function of p.
Bollobás (1998) contains an excellent introduc-
tion to the field, as does the review by Albert
and Barabási (2002); here, we illustrate just two
aspects of this literature by considering the ex-
pected values of some statistics in G(n, p) and by
reviewing properties of a graph as a function of p
in G(n, p).

We begin by determining the expected number
of cliques in a graph. Let Ys = Ys(G) be the num-
ber of cliques of order s in the graph G. Then, the
expected value of Ys can readily be computed as

E(Ys) = (n!/[s!(n− s)!])pu,

where u = s(s− 1)/2 is the number of edges in
a clique of order s (e.g., see Bollobás, 1998). In
G(17,0.25), for example, the expected number of
cliques of order 3 is 10.6, and the expected num-
ber of cliques of order 4 is 0.58. The graph of
Figure 18.1 has 17 nodes and a density of 0.25,
and it is therefore interesting to compare the ex-
pected values for G(17,0.25) with those observed
for the graph of Figure 18.1—namely, 34 cliques
of order 3 and 18 cliques of order 4.

Indeed, if F is any subgraph with s nodes and
t edges and YF is the number of subgraphs of G
that are isomorphic to F , then the expected value
of YF can readily be shown to be

E(YF) = (n!/[(n− s)!a])pt,

where a is the number of distinct ways in which
the nodes of the graph F can be labeled with the
integers 1,2, . . . ,s to yield the same graph. For
example, in the case of a cycle of order s, F has s
edges and s nodes, and there are 2s distinct ways
in which nodes can be labeled to yield the same
graph; hence,

E(YF) = (n!/[(n− s)!2s])ps.

The expected number of induced subgraphs iso-
morphic to F may be similarly derived:

E(YF) = (n!/[(n− s)!a])pt(1− p)s(s−1)/2−t .

The latter formula may be used, for example, to
compute the expected triad census for a graph of
a given order and density.

The expression for the expected number of
subgraphs isomorphic to F in G(n, p) allows us
to explore features of random graphs as n tends
to infinity. Since

E(YF) = (n!/[(n− s)!a])pt ≈ ns pt/a,

it is clear that if p = cn−s/t , then E(YF ) ≈ ct/a
and the expected number of subgraphs isomor-
phic to F , denoted by λ = ct/a, is a finite num-
ber. If, however, pns/t tends to 0 or ∞ as n
tends to ∞, then the probability that a random
graph in G(n, p) contains at least one subgraph
F converges to 0 or 1, respectively (e.g., Albert
& Barabási, 2002). Thus, p = cn−s/t is a criti-
cal probability below which graphs with large n
rarely contain F and above which they almost
certainly do. An important set of results in ran-
dom graph theory documents the many graph
properties that show this form of rapid transition
from being very unlikely to very likely as a func-
tion of the edge probability p.

Application of this approach allows us to in-
fer for large n some expected features of random
graphs in G(n, p) as a function of p, relative to n.
Thus, for example, if p < 1/n, then almost every
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graph in G(n, p) comprises a number of compo-
nents, each without any cycles; if p lies between
1/n and (ln n)/n, then almost every graph has a
so-called giant component (i.e., a component in-
cluding a large proportion of the nodes in N); and
if p > (ln n)/n, then almost every graph is con-
nected (e.g., see Albert & Barabási, 2002).

Random directed graph distributions may be
similarly defined, though interest in them has
largely come from social scientists with applica-
tions to network data in mind. It is to this litera-
ture that we now turn.

APPLICATIONS OF RANDOM GRAPH

AND DIRECTED GRAPH DISTRIBUTIONS

TO SOCIAL NETWORK DATA

Before describing the application of random
graphs to social networks, it is important to say
something about typical sources of social net-
work data (e.g., Wasserman & Faust, 1994). A
common method of measuring social networks is
to survey all members of a circumscribed popu-
lation about their ties. In this case, ties are typ-
ically directional, and there may or may not be
a limit imposed on the maximum number of ties
reported by each respondent. Occasionally in this
case, it is fruitful to consider the graph con-
structed from mutual ties only. For example, the
graph of Figure 18.1 is the set of mutual ties
observed among the girls in a Grade 8/9 high
school class, obtained in response to the question
“Who are your best friends in the class?” Net-
works are also commonly inferred from archival
data, such as communication logs or membership
or attendance lists. Less common strategies in-
clude direct observation and more elaborate sur-
vey techniques.

Application of Directed
Random Graph Distributions

In the 1930s, the psychiatrist Jacob Moreno
and colleagues reported using random directed
graph distributions to compute quantities such
as the expected number of mutual ties (i.e.,
∑i, j Xi jXji/2), where Xi j denotes the random vari-
able for the tie from node i to node j. Moreno and
colleagues also calculated properties of the inde-

gree distribution in a random directed graph dis-
tribution (see, e.g., the very interesting historical
account in Freeman, 2004).

Consider, for example, the random graph dis-
tributionDG(n, p) with a fixed set of n nodes and
uniform but unknown arc probability p; this is the
directed graph analog of G(n, p). The expected
number of mutual ties for directed graphs in this
distribution is n(n− 1)p2/2, and the expected
number of nodes with indegree k is npk(1 −
p)n−1−k . If a social network with n nodes and
x++ = ∑i j xi j arcs has been observed, then the
arc probability p can be estimated from the net-
work data as p∗ = x++/(n[n−1]). This estimate
of the arc probability can be used to compute the
expected number of mutual ties and the expected
number of nodes with each possible indegree k,
on the assumption that the observed network was
generated from DG(n, p∗). These expected val-
ues can be compared with the observed number
of mutual ties and the observed indegree distribu-
tion in the network x. If the observed values are
markedly different from the expected ones, then
it can be argued that there is reason to question
the suitability of the assumption of independent
random arcs with uniform probability that under-
pinned the computation of expected values.

The computations by Moreno and colleagues
revealed what would later become a very com-
mon finding: that the observed number of mutual
ties in an observed human social network is much
greater than the number expected on the basis of
arc probability alone and the indegree distribu-
tion is more heterogeneous than expected—that
is, there are more nodes with very low and very
high indegree than expected. These and similar
findings suggest that tendencies toward mutuality
and heterogeneity in partner “attractiveness” are
systematic features of observed social networks
comprising ties of affiliation.

Most important for our purposes here, Moreno
introduced the idea of using random directed
graph distributions as null distributions. The fea-
tures of this null distribution could be compared
with features of an observed network, a compar-
ison enabling researchers to identify the ways in
which the observed network appeared to be sys-
tematically different. In this early example, and
in many to follow, it was important that the ex-
pected features of the null distribution could be
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derived mathematically. Much later, when fast
computers and more versatile simulation algo-
rithms were introduced, this restriction could be
relaxed, but it was an important reason for the
focus of early applications on this “null distribu-
tion” approach. Moreover, although this early ap-
plication assumed very simple null distributions
(such as independent arcs with uniform tie proba-
bility), more complex distributions were soon de-
veloped. Indeed, the strategy continues to be used
in new ways (e.g., Bearman et al., 2004; Pattison,
Wasserman, Robins,& Kanfer, 2000)and to be re-
discovered in new fields (e.g., Milo et al., 2002).
It remains an important means by which some of
the systematic structural properties of human so-
cial networks can be and have been uncovered.

Holland, Leinhardt, and colleagues were re-
sponsible for developing a number of important
elaborations of this basic strategy. For exam-
ple, Holland and Leinhardt (1975) computed the
expected mean vector and variance-covariance
matrix for the triad census in the uniform random
directed graph distribution U | mut, asym, null1

conditional on fixed numbers mut, asym, and
null of mutual, asymmetric, and null ties, respec-
tively (mut = ∑i j xi jx ji/2, asym = ∑i j[xi j(1 −
x ji) + x ji(1− xi j)], null = ∑i j(1− xi j)(1− x ji)).
In other words, they computed the expected dis-
tribution of the triad census while conditioning
on the dyad census. This allowed them to con-
struct a test statistic for any linear combination
of triad counts and, hence, assess whether the ob-
served combination of triad counts is in the upper
or lower tail of the expected distribution. For ex-
ample, they could test for the presence of transi-
tivity (i.e., the property that arcs from nodes i to j
and from j to k are accompanied by an arc from
i to k).

Similar calculations can be made for other
distributions of possible interest, including the
uniform distribution U | {xi+},mut conditional
on the outdegrees of each node in the directed
graph as well as the number of mutual ties.
Of course, for some desirable combinations,
such as U | {xi+},{x+i},mut, the calculations
are very difficult and have prompted alterna-

1In fact, Holland and Leinhardt (1975) termed this the U |
MAN distribution, but we have attempted to keep notation
consistent in the chapter.

tive parametric approaches. In some of these
difficult cases, clever simulation strategies have
been devised to circumvent the difficult math-
ematics. For example, Snijders (1991) used an
importance-sampling approach to simulate U |
{xi+},{x+i}, and McDonald, Smith, and Forster
(2007) have described a Markov chain Monte
Carlo algorithm to simulate the distribution U |
{xi+},{x+i}, mut.

BIASED NETS

One other early probabilistic approach deserves
mention. In a series of papers, Rapoport and
colleagues developed the theory of biased nets—
that is, random networks with biases toward
symmetry, transitivity, and other features charac-
teristic of observed social networks (Rapoport,
1957). Although a full and satisfactory mathe-
matical treatment proved elusive, Rapoport and
colleagues employed their conceptualization of
biased nets to conduct some illuminating stud-
ies of the connectivity structure of a large friend-
ship network (e.g., Rapoport & Horvath, 1961).
In part, their work can be seen as the intellec-
tual precursor to the more general probabilis-
tic developments described below, but a differ-
ent framing of the “biases” has proved more
useful.

THE p1 MODEL

Comparison of observed social networks with
random directed graph distributions consistently
revealed a greater than expected number of
mutual ties and greater than expected degree het-
erogeneity. As a consequence, it was felt desir-
able to compare observed networks with graph
distributions that resembled observed networks
in these fundamental respects. The problem of
satisfactorily simulating the random graph dis-
tribution conditional on the number of mutual
ties and the in-degree and out-degree sequences
is arguably still not resolved. In the meantime,
Holland and Leinhardt (1981) developed an alter-
native approach: a probability model that param-
eterized these tendencies. This model was an
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important step toward the development of a more
general framework.

The p1 model developed by Holland and
Leinhardt (1981) assumes independent dyads
Di j = (Xi j,Xji). The distribution of the entire net-
work X = [Xi j] can then be determined by spec-
ifying the probability of each possible dyadic
form for Di j since the probability of the entire
network X is the product of the dyad probabili-
ties. The individual dyad probabilities can be ex-
pressed in terms of the probability of occurrence
of a mutual dyad, an asymmetric dyad, and a null
dyad. Thus, we define

Pr(Di j = (1,1)) = mi j = mji,

Pr(Di j = (1,0)) = ai j, and

Pr(Di j = (0,0)) = ni j = n ji,

where mi j + ai j + a ji + ni j = 1 for all i �= j.
The resulting probability distribution

Pr(X = x)

= ∏
i< j

m
Xi jXji
i j ∏

i�= j

a
Xi j(1−Xji)
i j ∏

i< j
n

(1−Xi j)(1−Xji)
i j

may then be reexpressed in the exponential form

Pr(X = x) = K exp[∑
i< j

ρi jXi jXji +∑
i j

θi jXi j],

where, for all i �= j,

• ρi j = log{mi jni j/(ai ja ji)} is an index of
reciprocity,

• θi j = log{ai j/ni j} is a log-odds measure of
the probability of an asymmetric dyad be-
tween i and j, and

• K = ∏i< j[1/(1 + exp(θi j) + exp(θ ji) +
exp(ρi j + θi j + θ ji))] is a normalizing
quantity.

Holland and Leinhardt added two useful
restrictions to this general dyad-independent
model. The first was that the reciprocity param-
eter ρi j is a constant for all dyads; that is, ρi j = ρ
for all i �= j. The second was that the parameter
θi j depended additively on the propensity of arcs
to emanate from node i and the propensity of arcs
to have node j as a target; in other words,

θi j = θ + αi + β j, for i �= j.

The resulting model is termed the p1 model:

p1(x) = Pr(X = x)

= K exp

[
ρ ∑

i, j
Xi jXji + θX++

+ ∑
i

αiXi+ +∑
i

βiX+i

]
.

The parameters ρ and θ can be interpreted as uni-
form reciprocity and density parameters, and the
node-dependent parameters αi and βi reflect the
expansiveness and attractiveness, respectively, of
each node i.

The development of the p1 model was an im-
portant step in probabilistic network theory, not
the least because much of the machinery of sta-
tistical modeling could be brought to bear on the
problem of assessing model adequacy. The model
could be estimated from data, and its goodness
of fit could be subjected to careful scrutiny, as
Brieger (1981) demonstrated. Such scrutiny led
to the recognition that observed networks often
exhibited structural properties not captured by
the parameters of the p1 model and spawned the
development of two important lines of further
model development.

LATENT VARIABLE MODELS

The first line of development is a series of la-
tent variable models in which the assumption of
independent dyads is replaced by an assumption
of independent dyads conditional on unobserved
variables representing some potential underlying
structure.

One such model was inspired by the concept
of structural equivalence in a graph (Lorrain &
White, 1971). Two nodes are structurally equiv-
alent if they have identical patterns of relation-
ships to other nodes. The concept of structural
equivalence has been very influential in the so-
cial networks literature because it can be used to
represent the idea that two actors have the same
social position in a network; that is, that they are
indistinguishable from a relational point of view.

Formally, two nodes i and j are structurally
equivalent in a directed graph G with adjacency
matrix x if xik = x jk and xki = xk j for all nodes
k �= i, j in N. Structurally equivalent nodes can
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be partitioned into blocks. Nowicki and Snijders
(2001) assumed that the blocks to which nodes
belong are unobserved. They defined a set of
independent and identically distributed latent
random variables Z = [Zi], where Zi denotes
the block of node i and Pr(Zi = k) = θk. They
assumed the dyads Di j = (Xi j,Xji) to be con-
ditionally independent given the blocks and the
probability that a dyad has a particular relational
form to depend only on the (unobserved) blocks
of the nodes. In other words,

Pr(Di j = a | Z = z) = ηa(zi,z j),

where a is a vector of possible values for the
dyad, with a ∈ {(1,1),(1,0),(0,1),(0,0)} for a
directed graph and a∈ {(1,1),(0,0)} for a graph,
and ηa(zi,z j) is the block-dependent probability
of observing the vector a.

In this model, two nodes i and j are stochasti-
cally equivalent if they belong to the same block
and hence the same dyad probabilities (Pr(Dik =
a | Z = z) = Pr(Djk = a | Z = z)) for all nodes
k. Since the dyads are assumed to be condition-
ally independent given the blocks Z, the joint
distribution of the Di j given Z is the product of
the conditional dyad probabilities. Nowicki and
Snijders (2001) developed a Bayesian approach
to the estimation of θ and η and, hence, the com-
putation of the posterior probabilities that any
pair of nodes are in the same block and that a
dyad has any particular relational form.

Several other important latent variable mod-
els have been developed for particular types of
social networks that are likely to reflect some
form of proximity among actors, such as friend-
ship or collaboration. In cases such as these, it
may be reasonable to assume that tie probabilities
are monotonically related to proximity in a latent
space. For example, Hoff, Raftery, and Handcock
(2002) proposed a model that assumes that nodes
have latent locations in some low-dimensional
Euclidean space and that given these latent
locations, tie variables are conditionally indepen-
dent. Schweinberger and Snijders (2003) devel-
oped a similar model based on an ultrametric
rather than Euclidean space; in their model, every
pair of nodes is associated with an unobserved
distance in an ultrametric space corresponding to
a discrete hierarchy of “settings,” and tie proba-
bilities are conditionally independent given these

latent ultrametric distances. (Distances in an ul-
trametric space satisfy the ultrametric inequality;
i.e., d(i, j) � max{d(i,k),d( j,k)} for any triple
of nodes i, j,k.) They developed approaches for
estimating the unobserved ultrametric distances.
Handcock, Raftery, and Tantrum (2005) have re-
cently extended Hoff et al.’s (2002) model by as-
suming that the latent locations are drawn from
a finite mixture of multivariate normal distribu-
tions, each of which represents a different group
of nodes.

MARKOV RANDOM GRAPHS

The second recent line of development has been
to build probabilistic network models in which
conditional dependencies among tie variables are
permitted. This work began with the recognition
by Frank and Strauss (1986) that a general ap-
proach for modeling interactive systems of vari-
ables (Besag, 1974) could be usefully applied to
the problem of modeling systems of interdepen-
dent network tie variables on a fixed set of nodes.
This was an important step because it permitted
models to go beyond the limiting assumption of
dyad independence in quite a general way. Frank
and Strauss (1986) introduced a Markov depen-
dence assumption for network tie variables: Two
network tie variables were assumed to be condi-
tionally independent given the values of all other
network tie variables, unless they had a node in
common. Thus, whereas a tie between nodes i
and j was assumed to be conditionally indepen-
dent of ties involving all other distinct pairs of
nodes k and l, it could be conditionally dependent
on any other ties involving i and/or j.

Assumptions about which pairs of tie vari-
ables are conditionally dependent, given the val-
ues of all other tie variables, can be represented as
a dependence graph. The node set of the depen-
dence graph D is the set of tie variables {Xi j},
and two tie variables are joined by an edge in
D if they are assumed to be conditionally depen-
dent given the values of all other tie variables. In
the case of G(n, p), D is an empty graph since all
pairs of variables are assumed to be mutually in-
dependent. In the Markov case, the variable Xi j

is connected to Xik and Xjk for all k �= i or j, and
the dependence graph is connected. Figure 18.5
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Figure 18.5 Dependence graph for a Markov random graph on four nodes.

shows the Markov dependence graph for a ran-
dom graph of order 4.

As Frank and Strauss originally outlined, the
consequences of any proposed assumptions about
potential conditional dependencies among net-
work tie variables can be inferred from the
Hammersley-Clifford theorem (Besag, 1974).
The theorem establishes a model for the inter-
acting system of tie variables in terms of param-
eters that pertain to the presence or absence of
certain configural forms in the network. The
model, known as an exponential random graph
model, takes the general form

Pr(X = x) = exp

(
∑
A

γAzA(x)

)
/κ ,

where A is a subset of tie variables (defining a
potential network configuration), γA is a model
parameter associated with the configuration A (to
be estimated) and is nonzero only if the subset A
is a clique in the dependence graph D, zA(x) =
∏Xi j∈A xi j is the sufficient statistic corresponding
to the parameter γA and indicates whether or not
all tie variables in the configuration A have val-
ues of 1 in the network x, and κ is a normalizing
quantity.

To reduce the number of model parameters,
Frank and Strauss (1986) introduced a homo-
geneity constraint that parameters for isomorphic
configurations are equal. With this constraint,
there is a single parameter γ[A] for each class [A]
of isomorphic configurations that correspond to
cliques in the dependence graph. The sufficient
statistic in the model corresponding to the class
[A] is then

Z[A](x) = ∑
A∈[A]

∏
Xi j∈A

xi j,

that is, a count of all observed configurations in
the graph x that are isomorphic to the configu-
ration corresponding to A. For example, in the
case of a homogeneous Markov random graph,
it is readily seen that cliques A in the dependence
graph D correspond to graph configurations that
are edges, stars, and triangles (see Figure 18.6),
and the model therefore takes the form

Pr(X = x)

= exp(θL(x)+∑
k

σkSk(x)+ τT (x))/κ ,

where L(x), Sk(x), and T (x) are the number of
edges, k-stars (2 � k � n− 1), and triangles in
the network x and θ , σk(2 � k � n−1), and τ are
the corresponding parameters.
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Figure 18.6 Markov model configurations: edges, stars, and triangles.

In many circumstances, the parameters may
be interpreted by observing that if a configura-
tion class [A] has a large positive (or negative)
parameter in the model, then the presence of many
configurations in the class enhances (or reduces)
the likelihood of the overall network, net of the
effect of all other configurations. It should be
noted, though, that the function relating the value
of one of the model’s parameters, say λ[A], to
the expected value of the corresponding sufficient
statistic z[A](x) may be markedly nonlinear and
exhibit a sharp and rapid transition from lower
average counts to higher average counts, with a
relatively small change in the parameter (holding
constant the values of all other model parameters).
For example, the expected number of triangles in
a graph as a function of the triangle parameter τ
is shown for a graph on 17 nodes in Figure 18.7.
The values of the parameters θ , σ2, and σ3 are
fixed at−1.2558,−0.0451, and−0.1084, respec-
tively, and τ takes values in the range [0.05, 1.70].
Figure 18.7 shows the distribution of the triangle
statistic in the form of a box plot for each value of
τ . It can be seen that for low values of τ , small in-
creases in τ are associated with small and steady
increases in the triangle statistic. As τ approaches
1.40, though, the impact of small changes in τ in-
creases rapidly in magnitude, and there is a sharp
transition to a higher value of the triangle statis-
tic. Near the point of transition, the triangle statis-
tic may take values typical of the graphs on either
side of this apparent threshold. This form of non-
linear relationship is common, and the location of
this threshold and the sharpness of the rise in the
region of greatest sensitivity are likely to depend
on other parameter values.

It is important to emphasize that even though
this model is well understood in the case where
only the parameter θ is nonzero (since this
is just the model G(n, p) with p = exp(θ )/
[1 + exp(θ )]), more complex instantiations can
be seen as models for self-organizing network
processes (Robins, Pattison, & Woolcock, 2005).
Robins et al. (2005) have demonstrated that
specific sets of parameter values for the homo-
geneous Markov model can characterize very di-
verse network structures, including small worlds,
caveman worlds, long-path worlds, and so on.

For some parameter values, the model may ac-
cord very high probability to a small set of graphs
and very low probability to the rest, as Handcock
(2004) and Snijders (2002) have demonstrated.
Handcock termed these models near-degenerate.
For detailed investigation of the behavior of spe-
cific models, see Handcock (2004), as well as
Park and Newman (2004) and Burda, Jurkiewicz,
and Krzywicki (2004).

Model Simulation

To understand properties such as near-
degeneracy of the exponential random graph
model Pr(X = x) = exp(∑A γAzA(x))/κ , it is
helpful to be able to simulate it efficiently (i.e.,
to draw graphs x with probability Pr(X = x)),
and this generally means circumventing the need
to compute the normalizing quantity κ , since κ
is a function of all graphs in the distribution.
As Strauss (1986) and others have observed, the
Metropolis algorithm can be used for this pur-
pose. The algorithm sets up a Markov chain on
the space of all possible graphs of order n in such
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Figure 18.7 Boxplots for the triangle statistic as a function of the triangle parameter for a Markov model on a
graph of 17 nodes (θ =−1.2558, σ2 =−0.0451, σ3 =−0.1084, τ between 0.00 and 1.75).

a way that the Markov chain has the model as
its stationary distribution. It may be described as
follows:

1. Begin with some graph x.

2. At each step, select an edge at random, say
the (i, j) edge, and let x′ be the graph that
is identical to x, except that the edge from
i to j is switched to absent if it is present in
x or to present if it is absent in x.

3. Replace x by x′ with probability min[1,
exp{∑A γA(zA(x′)− zA(x)}].

4. Return to Step 2, unless some specified tar-
get number of steps has been taken.

To sample from Pr(X = x), it is usual to be-
gin sampling graphs from the chain after some
initial number of steps have been completed (the
burn-in period); graphs are then sampled at a rate

that may depend on n. Many variations of this
approach may also be used; a valuable discussion
may be found in Snijders (2002).

Estimation of Model Parameters

In many settings, primary interest lies in esti-
mating exponential random graph model param-
eters from observed network data. For example,
given the graph of Figure 18.1, there may be in-
terest in estimating the parameters of a Markov
model from which it might have been generated.
In the early applications of these models to ob-
served data, an approximate form of estimation
known as pseudolikelihood estimation was of-
ten used (Strauss & Ikeda, 1990; Wasserman
& Pattison, 1996), even though the properties of
the estimates were not well understood. Initial
attempts to apply the very promising approach
of Markov chain Monte Carlo maximum likeli-
hood estimation (MCMCMLE) were not always
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successful because the properties of the models
under consideration were not always fully appre-
ciated, as Snijders (2002) and Handcock (2004)
demonstrated. However, with a growing under-
standing of model properties and more careful at-
tention to model adequacy, substantial progress
has now been made in implementing MCM-
CMLE approaches (see Handcock, Hunter, Butts,
Goodreau, & Morris, 2004; Snijders, 2002).

As an example of MCMCMLE, we estimate
the parameters of the model

Pr(X = x)

=
exp(θL(x)+ σ2S2(x)+ σ3S3(x)+ τT(x))

κ

for the mutual friendship network of Figure 18.1
using the approach proposed by Snijders (2002).
The resulting estimates and estimated standard
errors for the parameters θ , σ2, σ3, and τ are
shown in Table 18.2.2 Also displayed in Table
18.2 are convergence t statistics, computed as the
difference between the observed value of the suf-
ficient statistic for a parameter and its average
simulated value, divided by the standard devia-
tion of simulated values. If the estimated value
is indeed the maximum likelihood estimate, the
simulated values should be centered on the ob-
served value and the t statistics should all be
small, preferably below 0.1 (Snijders, 2002). It
can be seen from Table 18.2 that the t statis-
tics satisfy this requirement. Although the edge,
2-star, and 3-star parameters are negative and
within about 1 standard error of 0, the triangle
parameter is positive and approximately seven
times its estimated error. This suggests that, other
graph features (edges, 2-stars, and 3-stars) being
equal, graphs with more triangles are more likely.
That such a model is needed for the graph of
Figure 18.1 is consistent with the earlier compu-
tations based on G(17, 0.25).

Goodness of Fit

A good statistical model should not be un-
necessarily complex, but it should be adequate:

2The estimation was conducted using PNet (Wang, Robins,
& Pattison, 2006), an implementation of the estimation ap-
proach in Snijders (2002). Retrieved from http://www.sna.
unimelb.edu.au/pnetpnet.html.

that is, the data should resemble realizations from
the model in many important respects. We can
assess model adequacy by comparing the ob-
served network with graphs generated by the
model in features that are not necessarily param-
eterized within the model. What is important in
such comparisons is very much a function of
the modeling context, but there are often good
reasons to require that the model captures the
degree of clustering in a network, the distribu-
tion of degrees, and the connectivity structure
that is represented by the geodesic distribution
(e.g., Goodreau, 2007; Robins, Snijders, Wang,
Handcock, & Pattison, 2007). It is important
to note that only some of these characteristics
need be associated with model parameters; others
might be seen as consequences of these param-
eterized tendencies.

For example, if we simulate the model

Pr(X = x)

=
exp(θL(x)+ σ2S2(x)+ σ3S3(x)+ τT (x))

κ

using the parameter estimates in Table 18.2, we
can not only compare the observed graph with the
simulated graph in terms of its sufficient statistics
(viz., the number of edges, 2-stars, 3-stars, and
triangles), but we can also make the comparison
in relation to any unmodeled network character-
istic, such as the number of nodes of degree 4 or
more, the number of geodesic distances of length
3, and so on.

Table 18.3 summarizes these comparisons for
the graph of Figure 18.1 and the parameter es-
timates of Table 18.2. It can be seen that the t
statistics are all less than 1 for

• the local clustering coefficient (the average
across all nodes i of the proportion of pairs
of nodes j and k incident with i(xi j = 1 =
xik) that are themselves connected (x jk = 1),

• the global clustering coefficient (the pro-
portion of the triples of nodes {i, j,k} with
xi j = 1 = xik for which x jk = 1),

• the standard deviation of the degree distri-
bution, and

• the skewness coefficient of the degree distri-
bution.
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Table 18.2 MCMCMLEs for Markov Model of the Graph of Figure 18.1

Parameter Estimate s. e. t

Edge −1.2558 1.3561 0.047
2-Star −0.0451 0.3551 0.060
3-Star −0.1084 0.0974 0.073
Triangle 1.4438 0.2073 0.058

Table 18.3 Goodness of Fit for Markov Model for the Mutual Friendship Network (Figure 18.1)

Simulated

Observed Mean Std dev t

Edges 34 34.07 8.91 −0.0077
2-Stars 139 138.35 77.45 0.0084
3-Stars 181 178.05 156.49 0.0189
Triangles 30 29.34 28.39 0.0231
Std dev degrees 2.09 1.71 0.46 0.8296
Skew degrees 0.08 −0.26 0.62 0.5480
Global clustering 0.65 0.54 0.21 0.5246
Mean local clustering 0.64 0.47 0.19 0.4917
Variance local clustering 0.14 0.10 0.04 0.9899

The observed graph, in other words, exhibits
levels of clustering and degree heterogeneity that
fall within the envelope of values expected for
the model. The 1st, 2nd, and 3rd quartiles of the
observed geodesic distribution are 1, 3, and 4,
respectively; the median values for the distribu-
tion of these quartiles across simulations were 2,
2, and 4, suggesting that the model is associated
with somewhat more homogeneous internode dis-
tances than the data. In Figure 18.8, the distri-
butions of the number of edges, 2-stars, 3-stars,
and triangles for the Markov random graph model
with these parameter values are shown. While the
mean of each distribution is close to the observed
value for the Figure 18.1 graph, as expected, it
can be seen that the distributions are positively
skewed. Indeed, Figure 18.7 shows the impact on
one of these statistics—the number of triangles—
of changing its corresponding parameter value τ
while holding all other parameters constant. It can
be seen from Figure 18.7 that the estimated value
of 1.4438 is very close to the point of transition be-
tween low and high values of the triangle statistic
and the positively skewed distribution of the trian-
gle statistic is consistent with the estimated value
of τ being just below this point.

Related Model Parameters

In the Markov model just fitted, parameters for
2-stars and 3-stars were included, but parameters
for higher-order stars (4-stars, 5-stars, and so on)
were assumed to be 0. Arguably, fitting higher-
order star parameters might be desirable, because
more star parameters will lead to better char-
acterizations of the degree distribution for the
network. Indeed, Snijders, Pattison, Robins, and
Handcock (2006) proposed that all star param-
eters be used, but they also imposed a hypothesis
about the relationships among stars parameters.
Specifically, they assumed that

σk+1 = (−1/λ )σk,

for k > 1 and λ � 1 a (fixed) constant,

a hypothesis they termed the alternating k-star
hypothesis. It follows from this hypothesis that

∑
k

σkSk(x) =

[
∑
k

(−1)kSk(x)/λ k−2

]
σ2

and, hence, that the entire set of starlike terms in
the model can be captured by a single star param-
eter (σ2) with a single alternating k-star statistic:
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Figure 18.8 Distribution of edge, 2-star, 3-star, and triangle statistics in the Markov random graph
distribution with parameters θ =−1.2558, σ2 =−0.0451, σ3 =−0.1084, τ = 1.4438.

S[λ ](x) = ∑
k

(−1)kSk(x)/λ k−2

It is of course an empirical matter whether this is
an appropriate hypothesis to make. This expres-
sion can be simplified to yield a simpler form of
the alternating k-star statistic:

S[λ ](x) = λ 2 ∑
i
{(1−1/λ )k(i) + k(i)/λ −1},

recalling that k(i) denotes the degree of node i.3

Fitting the model

Pr(X = x) = exp(θL(x)+ σ2S[λ ](x))/κ

3Hunter and Handcock (2006) proposed an alternative statis-
tic based on geometrically weighted degree statistics; the re-
sulting model is equivalent, provided that the edge parameter
is included.

to the friendship network in Figure 18.1 yields
estimates (standard errors) of −2.7454 (1.3794)
and 0.4822 (0.4098) for θ and σ2, respectively
(as before, θ is an edge parameter, and L(x), the
number of edges in the network x, is its sufficient
statistic). Although this model does a reasonable
job in reproducing the standard deviation and the
skewness coefficient for the degree distribution,
not surprisingly, it does a poor job in recover-
ing network clustering. We present a better-fitting
model below.

In some applications to date (e.g., Goodreau,
2007; Snijders et al., 2006), a fixed value of λ
(such as 2) has been assumed; Hunter and Hand-
cock (2006) have shown that λ can be treated
as a variable within a curved exponential family
model, and they have developed an associated es-
timation method.
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REALIZATION-DEPENDENT MODELS

A critique of the Markov dependence assump-
tion led Pattison and Robins (2002) to construct
a more general class of “realization-dependent”
network models. They argued that conditional de-
pendencies among tie variables may emerge from
the network processes themselves, with new de-
pendencies created as network ties are generated.
For instance, Xi j and Xkl might become condi-
tionally dependent if there is an observed tie be-
tween, say, j and k. Baddeley and Möller (1989)
termed such models realization dependent.

The 4-Cycle Hypothesis

Snijders et al. (2006) argued that in addition to
the Markov assumption, two network ties, Xi j and
Xkl , might be conditionally dependent in the case
where there is an observed tie between, say, j and
k and between l and i; that is, if the presence of a
tie from i to j and from k to l would create a 4-
cycle in the graph. The rationale for this assump-
tion is that a 4-cycle is a closed structure that
can sustain mutual social monitoring and influ-
ence, as well as levels of trustworthiness within
which obligations and expectations might prolif-
erate (e.g., Coleman, 1988).

Snijders et al. (2006) showed that this assump-
tion led to additional nonzero parameters in an
exponential random graph model, including those
referring to collections of 2-paths with common
starting and ending nodes and collections of tri-
angles with a common base (see Figure 18.9).
We define a k-2-path to be a subgraph comprising
two nodes, i and j, and a set of k paths of length
2 from i to j through distinct intermediate nodes
m1,m2, . . . ,mk. A k-triangle is a subgraph com-
prising two connected nodes, i and j, and a set
of k paths of length 2 from i to j through distinct
intermediate nodes m1,m2, . . . ,mk. If we let νk be
the model parameter associated with a k-2-path
and τk the parameter associated with a k-triangle,
we can entertain assumptions about the relation-
ships among related parameters (as in the case of
k-stars earlier)—namely,

νk+1 =−νk/λ

and
τk+1 =−τk/λ .

As for the star parameters, this is just a hy-
pothesis, and its adequacy needs to be assessed.
Under this assumption, the statistics

U [λ ](x) = ∑
k

(−1)kUk(x)/λ k−2

and

T [λ ](x) = ∑
k

(−1)kTk(x)/λ k−2

become single statistics associated with the
parameters ν1 and τ1, respectively, where Uk(x)
and Tk(x) are the number of k-2-paths and k-
triangles in the network x. It should be noted that
the value of λ need not be the same for each
statistic; as before, Hunter and Handcock have
shown how to estimate these parameters.

The parameter estimates presented in Table
18.4 are for a model fitted to the mutual friend-
ship network of Figure 18.1. The positive τ1 esti-
mate suggests that networks with relatively many
triangles are more likely, other statistics being
equal, with the cumulative impact of multiple tri-
angles with a common base pair of nodes dimin-
ishing as the number of such triangles increases.
Likewise, the negative ν1 estimate suggests that
networks with relatively few 2-paths among a
pair of nonconnected nodes are more likely, other
statistics being equal. Both of these effects are
consistent with a pressure toward closure for mu-
tual friendship ties.

The goodness of fit for this model is sum-
marized in Table 18.5. The median values of
the quartiles of the geodesic distribution for the
random graph distribution simulated from the
parameter estimates in Table 18.4 are 2, 3, and 5,
suggesting better recovery of short distances than
the Markov model, though not of longer ones.
Overall, the model of Table 18.4 appears to do
a reasonably good job of characterizing the fea-
tures of the mutual friendship network.

Directed Graph Models

The derivation of similar classes of models
for directed graphs is, in principle, very similar
to the derivation of models for their nondirected
counterparts. Directed graphs give rise, how-
ever, to substantially more complicated param-
eterizations, as a comparison between triadic
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Figure 18.9 The k-star, k-2-path, and k-triangle.

Table 18.4 MCMCMLEs for Realization-Dependent Exponential Random Graph Model for the Mutual
Friendship Network (Figure 18.1)

Parameter estimate s.e. t

Edge −0.0354 1.7851 −0.037
2-Star −0.0520 0.1094 −0.038
k-Star 0.0674 0.8689 −0.040
k-Triangles 0.7250 0.3159 −0.043
k-2-Paths −0.5583 0.1727 −0.025

Table 18.5 Goodness of Fit of Realization-Dependent Model for the Mutual Friendship Network

Simulated

Statistic Observed Mean Std dev t

Edges 34 34.44 9.33 −0.047
2-Stars 139 145.13 94.54 −0.065
k-Stars 77.8 79.73 34.68 −0.054
k-Triangles 46.0 47.01 28.39 0.023
k-2-Paths 83.3 85.30 30.68 −0.064
Std dev degrees 2.09 1.77 0.60 0.522
Skew degrees 0.08 −0.17 0.46 −0.548
Global clustering 0.65 0.55 0.14 0.696
Mean local clustering 0.64 0.50 0.15 0.439
Variance local clustering 0.14 0.09 0.04 1.207
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forms in graphs and directed graphs quickly sug-
gests. There are, as a result, some subtleties to the
development of models in the directed graph case
(see Robins, Pattison, & Wang, 2006, for further
details).

Exogenous Covariates

The general modeling framework can read-
ily accommodate covariates at the node or dyad
level, and, of course, if such covariates are re-
garded as important influences on network tie
formation, then they should be included in mod-
els for the network. For example, a general and
systematic approach to the inclusion of node-
level covariates has been outlined by Robins,
Elliott, and Pattison (2001), who extended the
dependence graph formulation described ear-
lier to include directed dependence relationships
from exogenous node-level variables to endoge-
nous tie variables. These developments offer an
important means for exploring a wide range of in-
teresting interactions among actor-level and net-
work tie variables, including homophily effects
(e.g., McPherson, Smith-Lovin, & Cook, 2001)
and the effects of spatial locations (e.g., Butts,
2003; Wong, Pattison, & Robins, 2006).

EXTENSIONS

There are a variety of ways in which the models
just described may be extended to incorporate
richer data forms, including multiple networks,
longitudinal data, and changing node and tie sets.
In addition, some initial progress has been made
on the problem of dealing with missing data. We
do not have space for a full account of these in-
teresting and important developments but point to
some key developments in each case.

The development of probabilistic models for
graphs and directed graphs has been loosely
shadowed by the construction of a parallel, al-
beit generally later, set of models for multiple
networks measured on a common node set. Mul-
tivariate exponential random graph models are
described by Pattison and Wasserman (1999); see
also Koehly and Pattison (2005).

Although networks are often measured at a
single point in time, they are, in reality, dynamic
entities, and there is considerable interest in

the processes that underpin their evolution. An
important line of work has developed continuous-
time Markov process models for network evolu-
tion (e.g., see Snijders, 2001). More recently, this
framework has been extended to accommodate
the possibility of co-evolutionary mechanisms by
which network tie change depends on and con-
tributes to change in node attributes (Snijders,
Steglich, & Schweinberger, 2007).

CONCLUSION

The field of probabilistic network theory has
progressed rapidly in the past 10 years, and as
Goodreau (2007) and Robins et al. (2007) have
cogently demonstrated, it is now possible to build
plausible models for many small and large so-
cial networks. Undoubtedly, experience with the
current generation of realization-dependent net-
work models will lead to further improvements
in model specification and a clearer understand-
ing of how the content of network ties and the
contexts in which they are observed might inform
model building. Perhaps most important though,
the field has now advanced to the point where the
promise of a step-change in our understanding
of social processes on networks and their conse-
quences might be realized.
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