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HIGHER-ORDER 

CONSTRUCTS

LEARNING OUTCOMES

 1. Understand the logic and usefulness of higher-order constructs.

 2. Appreciate the different types of higher-order constructs and understand 

how to specify them in PLS-SEM.

 3. Comprehend how to estimate higher-order constructs using the SmartPLS 

software as well as how to interpret the results.

CHAPTER PREVIEW

With the rising complexity of theories and cause-effect models in the social sci-

ences, researchers have increasingly used higher-order constructs in their PLS-SEM 

studies (e.g., Sarstedt, Hair, Pick, Liengaard et al., 2022). Higher-order constructs 

differ from regular constructs in that they include a more general component that 

measures a conceptual variable at a higher level of abstraction, while simultaneously 

including several subcomponents, each of which measure more concrete traits of the 

concepts. Higher-order constructs permit reducing the number of structural model 

relationships, making the PLS path model more parsimonious, while increasing the 

bandwidth of content covered by certain constructs (e.g., Johnson, Rosen, & Chang, 

2011), and facilitating minimization of multicollinearity. In this chapter, we describe 

the nature of higher-order constructs and discuss how to develop and validate them 

in a PLS-SEM context.

HIGHER-ORDER CONSTRUCTS

Terminology and Motivation

Most PLS path models like those covered in the Primer on Partial Least Squares 

Structural Equation Modeling (PLS-SEM) (Hair, Hult, Ringle, & Sarstedt, 2022) deal 

with first-order constructs. These constructs represent conceptual variables, such as 

customer engagement, satisfaction, or loyalty using a set of items that capture a single 
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34  Advanced Issues in PLS-SEM

layer of abstraction. In some instances, however, the constructs researchers wish to 

examine are quite complex and can also be operationalized at higher levels of abstrac-

tion. Establishing a higher-order model or a hierarchical component model, as they 

are sometimes referred to in the context of PLS-SEM (Lohmöller, 1989, Chapter 3; 

Wold, 1982), most often involves testing a second-order construct that contains two 

layered structures of constructs. For example, satisfaction can be measured at two 

levels of abstraction. An ensuing higher-order construct would include a general sat-

isfaction construct along with several subconstructs that capture different more con-

crete attributes of satisfaction, such as satisfaction with the price, satisfaction with the 

service quality, satisfaction with the personnel, or satisfaction with the servicescape. 

These more concrete lower-order attributes then form the more abstract, higher-order 

satisfaction construct, as shown in Exhibit 2.1.

Instead of modeling the attributes of satisfaction as drivers of the respondent’s 

overall satisfaction—or other target constructs (e.g., customer loyalty)—higher-order 

modeling involves simultaneously mapping the lower-order components (LOCs) and 

a single higher-order component (HOC). Theoretically, this process can be extended 

to any number of layers yielding third-, fourth-, or fifth-order models, but researchers 

usually restrict their modeling to two layers (i.e., second-order models).

There are several reasons for including higher-order constructs in a PLS path 

model (e.g., Edwards, 2001; Johnson, Rosen, & Chang, 2011; Polites, Roberts, & 

Thatcher, 2012). One reason pertains to the bandwidth-fidelity tradeoff, or the idea 

that broader constructs are better predictors of criteria that span over multiple domains 

and/or periods of time. That is, if the goal is to predict broadly defined behaviors, 

then higher-order constructs might prove valuable. Another reason is to overcome the 

Lower-order

(first-order)

components

Higher-order

(second-order)

component

Satisfaction

with price

Satisfaction with

service quality

Satisfaction with

personnel

Satisfaction with

servicescape

Satisfaction

EXHIBIT 2.1 ■    Higher-Order Construct of Satisfaction
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Chapter 2  •  Higher-Order Constructs  35

jangle fallacy, which occurs when a single phenomenon is examined separately under 

the guise of two or more variables with different labels.

From a practical perspective, higher-order constructs enable researchers to reduce 

the number of relationships in the structural model, making the PLS path model more 

parsimonious, easier to comprehend, and reducing multicollinearity among anteced-

ent constructs. Exhibit 2.2 illustrates this aspect. As can be seen in the complex model, 

there are nine structural model relationships linking the exogenous constructs (Y
1
, Y

2
, 

and Y
3
) with the endogenous constructs (Y

4
, Y

5
, and Y

6
). By including a higher-order 

construct, the number of path coefficients can be reduced to six, yielding a more par-

simonious model in terms of structural model relationships. In this case, the HOC is 

assumed to fully mediate the LOCs’ effects on the endogenous constructs (for more 

detail on mediation, see Hair, Hult, Ringle, & Sarstedt, 2022; Sarstedt, Hair, Nitzl, 

Ringle, & Howard, 2020). This reduction in model complexity may come at the 

expense of explanatory power with respect to the endogenous constructs that the HOC 

explains (i.e., Y
4
, Y

5
, and Y

6
 in Exhibit 2.2). The reason is, different from a direct effects 

model where all exogenous constructs explain one endogenous construct (Exhibit 2.2, 

left panel), in the higher-order construct set-up, only the HOC explains the endog-

enous constructs (Exhibit 2.2, right panel).

Finally, higher-order constructs also prove valuable if formative indicators in a 

construct’s measurement model exhibit high levels of collinearity. High collinearity 

among the indicators of a formative measurement model can result in biased weights 

and their signs being reversed. Furthermore, collinearity increases standard errors and, 

thus, trigger Type II errors (i.e., false negatives; Hair, Hult, Ringle, & Sarstedt, 2022, 

Chapter 5). Higher-order models facilitate handling of collinearity problems by offer-

ing a means to rearrange measurement models. Provided that measurement theory 

supports this step, researchers can split up the set of indicators and establish separate 

constructs in a higher-order structure. Consider, for example, a formatively measured 

Complex model Higher-order construct

Y
1

Y
2

Y
3

Y
6

Y
6

Y
5

Y
5

Y
4

Y
4

LOC
1

(Y
1
)

LOC
3

(Y
3
)

HOC
LOC

2

(Y
2
)

EXHIBIT 2.2 ■    Higher-Order Constructs and Model Complexity
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36  Advanced Issues in PLS-SEM

construct with four indicators (x
1 
– x

4
), of which x

1
 and x

2
 as well as x

3
 and x

4
 are highly 

correlated. If conceptually meaningful, researchers could split up the formative con-

struct into two LOCs, each one being measured with noncollinear indicators (e.g., x
1
 

and x
3
 on the one hand and x

2
 and x

4
 on the other).

Types of Higher-Order Constructs

Establishing a higher-order structure requires researchers to develop and use an appro-

priate operational definition of the conceptual variable under consideration. The oper-

ational definition facilitates conceptualizing an abstract idea so that it represents the 

scope of measurable, observable qualities that can be studied (see Chapter 1). The oper-

ational definition guides the identification of relevant LOCs, each of which refers to a 

distinctive element (or component) associated with the HOC, and each of which has 

a set of indicators that can be specified by the distinctiveness of the element that char-

acterizes the LOC. At the same time, this characterizing distinctiveness should also be 

sufficiently relevant so only those LOCs that are important for the specific study are 

captured in a higher-order construct. The operational definition, with its character-

izing elements, can vary from study to study since a theoretical concept is not per se 

determined as multidimensional or unidimensional. Rather, a concept can be specified 

either way, representing different levels of theoretical abstraction (Bollen, 2011).

Conceptually, higher-order constructs can be established following a bottom-up 

(i.e., inductive) or top-down (i.e., deductive) approach (e.g., Johnson, Rosen, & Chang, 

2011). In the bottom-up approach, several constructs are combined into a single, more 

abstract construct. On the contrary, in the top-down approach, a more abstract con-

struct is defined to consist of several components, as is the case in the satisfaction exam-

ple described above (Exhibit 2.1). Even though frequently used in empirical research to 

reduce model complexity, we do not recommend simply summarizing information in 

a more abstract construct.

Establishing a higher-order construct in PLS-SEM always involves a loss of infor-

mation—at least in principle. The reason is that the direct effects between the LOCs 

(e.g., Y
1
 – Y

3 
in Exhibit 2.2, left panel) and the criterion constructs (e.g., Y

4
 – Y

6
 in 

Exhibit 2.2, left panel) are being replaced by three indirect effects via the newly estab-

lished HOC (Exhibit 2.2, right panel). The PLS-SEM method, however, allows esti-

mating all relationships in a wider nomological net of constructs (i.e., without the 

HOC) without loss of information. Therefore, when structural theory supports the 

inclusion of a larger number of constructs, which could be summarized in a HOC, 

justifying their joint consideration in form of a higher-order construct on the grounds 

of model parsimony only is not sufficient. Instead, higher-order constructs derived in 

a top-down manner offer researchers additional insights regarding the effects of dif-

ferent components embedded in a specific construct. Here, the researcher’s intention 

is to determine the effect of such components on other constructs in the model via the 

HOC.
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Chapter 2  •  Higher-Order Constructs  37

In addition to using theory to identify inclusion criteria for selecting suitable 

LOCs, the nature of relations among the LOCs and the HOC must be clarified. A 

HOC is a general concept that is either represented (in the reflective mode) or con-

stituted (in the formative mode) by its specific components (i.e., the LOCs). If the 

higher-order construct is reflective, the more general HOC manifests itself in several 

more specific LOCs. That is, the relationships go from the HOC to its LOCs. This 

type of model is also referred to as a spread model (Lohmöller, 1989, Chapter 3). If 

the higher-order construct is formative, several specific LOCs represent more concrete 

components that jointly form the more general HOC (Becker, Klein, & Wetzels, 2012; 

Edwards, 2001; Wetzels, Odekerken-Schroder, & van Oppen, 2009). That is, the rela-

tionships go from the LOCs to the HOC. This model type is also referred to as a 

collect model (Lohmöller, 1989, Chapter 3). The higher-order construct in Exhibit 

2.1 has formative relationships going from the LOCs to the HOC, representing each 

LOC’s relative contribution to forming the HOC. However, if operationalized differ-

ently, these relationships could also have been modeled in the opposite direction with 

the LOCs reflecting the HOC.

A formative specification is appropriate when the operational definition of the con-

ceptual variable suggests that a change in a LOC’s value due to, for example, a change 

in a respondent’s assessment of the trait being captured by the LOC changes the value 

of the HOC. Analogous to indicators in formative measurement models, the LOCs 

do not need to, but can, be correlated as they do not represent concrete manifesta-

tions of the HOC. In contrast, a reflective specification is appropriate when there is 

a more general, abstract construct that explains the correlations between the LOCs 

as shown in Exhibit 2.2. Hence, there should be substantial correlations between the 

LOCs that—analogous to reflective measurement models in first-order constructs—

are assumed to be “caused” by the HOC.

In addition to the measurement specification of the higher-order construct as a 

whole, as represented by the relationships between the HOC and the LOCs, higher-

order constructs need to be characterized on the grounds of the specification of the 

LOCs’ measurement models. The LOCs’ measurement models can also be reflective or 

formative. As a result, four main types of higher-order constructs are possible (Exhibit 

2.3), as discussed in the extant literature (Jarvis, MacKenzie, & Podsakoff, 2003; 

Wetzels, Odekerken-Schroder, & van Oppen, 2009). The reflective-reflective higher-

order construct (Type I higher-order construct) shown in Exhibit 2.3 has reflective 

relationships between the HOC and the LOCs, and also between the LOCs and the 

indicators. In this type of higher-order construct, the LOCs are highly correlated and 

the HOC represents the cause explaining these correlations. Lohmöller (1989, Chapter 

3) calls this type of higher-order construct hierarchical common factor model, in 

which the general HOC represents the common factor of several specific factors (i.e., 

LOCs). The use of reflective-reflective higher-order constructs has been subject to con-

siderable debate, with critics arguing that such models do not exist (or are meaningless) 
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38  Advanced Issues in PLS-SEM

since reflective measures should be unidimensional and conceptually interchangeable, 

which conflicts with the view of multiple underlying dimensions being distinct in 

nature (Lee & Cadogan, 2013). That is, if the indicators of each LOC would correlate 

highly, any indicator should also relate to any other LOC. This would make the LOC-

level redundant, implying that the indicators should be directly linked to the primary 

source of reflection—that is, the HOC (Mikulic, 2022). Temme and Diamantopoulos 

(2016) bemoan that this line of reasoning rests on the flawed assumption that unidi-

mensionality of the higher-order models’ elements (i.e., the LOCs and the HOC) is a 

necessary condition for reflective measurement (Bollen & Lennox, 1991). However, 

psychometric theory has long established that indicators can serve as measurements 

of more than one construct (e.g., Bollen 1989)—as is the case in, for example, bifactor 

models (e.g., Zhang, Sun, Cao, & Drasgow, 2021). Hence, the assumption that highly 

correlated indicators in the LOCs’ measurement models imply high indicator correla-

tions with all other LOCs stands on quicksand.

Reflective-reflective higher-order constructs might also be used in other settings, 

for example, in a situation where the LOCs represent different measurements of a 
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EXHIBIT 2.3 ■    Types of Higher-Order Constructs

Source: Adapted from Figure B1 in Ringle, Sarstedt, & Straub (2012).
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Chapter 2  •  Higher-Order Constructs  39

concept at different points in time (i.e., different batteries of a test sequence), which the 

HOC explains simultaneously. Lohmöller (1989, Chapter 3) characterizes this constel-

lation as a multiple battery model and presents the example of the general ability of 

schoolchildren. In this example, each LOC represents a test battery of verbal, numeri-

cal, and spatial indicators measured at different points in time (e.g., tests at the begin-

ning, middle, and end of the school year) for the same class (i.e., the same individuals). 

However, extant reviews of PLS-SEM’s use in different fields have not disclosed any 

applications of the multiple battery model thus far.

In a reflective-formative higher-order construct (Type II higher-order con-

struct; Exhibit 2.3), the HOC is a combination of several ref lectively measured 

LOCs. That is, the specific LOCs do not necessarily share a common cause but 

rather form the general HOC—the relationships go from the LOCs to the HOC. 

Barroso and Picón (2012) offer an example of a ref lective-formative higher-order 

construct in their analysis of perceived switching costs. They identify a set of six 

dimensions (benefit loss costs, personal relationship loss costs, economic risks costs, 

evaluation costs, set-up costs, and monetary loss costs) that represent LOCs of the 

more general HOC, perceived switching costs. Commenting on their measurement 

specification, Barroso and Picón (2012, p. 532) note: “A modification in one dimen-

sion does not necessarily imply a modification in another. In other words, they do 

not necessarily covary; rather, each dimension can vary independently of the others.” 

For this reason, unlike some prior research, Barroso and Picón (2012) propose that 

perceived switching costs is an aggregate construct that is expressed as a composition 

of its different LOCs—see Becker, Klein, and Wetzels (2012) for further examples 

of ref lective-formative higher-order constructs. When the higher-order construct is 

specified formatively (i.e., the relationships go from the LOCs to the HOC), the 

HOC fully mediates the relationships between the LOCs and any other construct 

the higher-order construct explains. For example, in the formative higher-order con-

struct in Exhibit 2.2, all relations from Y
1
, Y

2
, and Y

3
 to the criterion constructs Y

4
, 

Y
5
, and Y

6
 go through the HOC.

Another higher-order construct is the formative-reflective type (Type III higher-

order construct; Exhibit 2.3). The formative-reflective higher-order construct 

includes a more general HOC that explains the formatively measured LOCs. The 

objective of this type is extracting the common part of several formatively measured 

LOCs that have been established to represent the same theoretical content. However, 

every LOC builds on a set of different indicators. By using several formatively mea-

sured LOCs, researchers can overcome the problem that a stand-alone construct mea-

sured with formative indicators can hardly cover the construct’s domain in full. Using 

similar yet distinct formatively measured LOCs as representations of the HOC offers a 

broader coverage of the construct domain (Becker, Klein, & Wetzels, 2012). A typical 

example of this higher-order construct type is overall firm performance in which sev-

eral formatively measured LOCs represent performance-relevant characteristics (e.g., 

market share, number of employees, or turnover). The HOC represents the common 
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40  Advanced Issues in PLS-SEM

part of the LOCs (i.e., overall firm performance; Jarvis, MacKenzie, & Podsakoff, 

2003; Petter, Straub, & Rai, 2007). Alternatively, the formative-reflective higher-

order construct can serve as a multiple battery model as explained in the context of the 

reflective-reflective higher-order construct. In that case, the LOCs represent the same 

construct that has been formatively measured with the same indicators and for the 

same observations at different points in time. In this type of multiple battery model, 

the relationships from the HOC to the LOCs will be of similar magnitude since they 

represent one concept measured at different points in time.

Finally, the formative-formative higher-order construct (Type IV higher-order 

construct; Exhibit 2.3) determines the relative contribution of the formatively mea-

sured LOCs to the more abstract HOC. This type is useful to structure a complex for-

mative construct with many indicators into several subconstructs, as is the case when 

researchers subsume several concrete aspects under a more general concept. Again, 

firm performance would represent a concept of this nature that could be measured 

using this higher-order construct type. While the formative-reflective higher-order 

construct type would comprise different indices of overall firm performance by the 

LOCs, the formative-formative type includes LOCs representing different aspects of 

performance, such as the performance of different organizational activities or subdi-

visions (e.g., R&D performance, HR performance, sales performance) that together 

determine overall firm performance (i.e., the HOC; Jarvis, MacKenzie, & Podsakoff, 

2003; Petter, Straub, & Rai, 2007), but do not necessarily have to correlate with each 

other.

Theoretical models with higher-order constructs feature prominently in appli-

cations of PLS-SEM as evidenced in various review articles. Sarstedt, Hair, Pick, 

Liengaard et al.’s (2022) analysis of higher-order construct applications in the top 30 

marketing journals between 2011 and 2020 showed that 71 of the 239 analyzed studies 

(29.71%) included at least one such construct. The majority of these studies proposed 

second-order constructs (65 studies), while the remaining studies included third-

order constructs (5 studies) or both (1 study). Analyzing the construct types used, the 

authors found that most of the studies employ Type I (reflective-reflective; 30 studies), 

Type II (reflective-formative; 26 studies), or both (4 studies). Only five studies employ 

Type IV (formative-formative), while no study draws on a Type III (formative-reflec-

tive) measurement specification. In an earlier review, Ringle, Sarstedt, and Straub 

(2012) found a similar share of higher-order construct types published in the manage-

ment information systems flagship journal MIS Quarterly. Higher-order constructs 

are typically embedded in a larger nomological network of constructs, in which they 

serve as an antecedent, consequence, or both. For example, revisiting Sarstedt, Hair, 

Pick, Liengaard et al.’s (2022) analysis shows that in 67 of the 71 studies (94.37%), the 

higher-order construct is part of a larger network of constructs. In Ringle, Sarstedt, 

and Straub (2012), this share was only marginally smaller (86.67%). Therefore, the 

discussion should not be limited to higher-order constructs as separate constructs, 

also referred to as a stand-alone higher-order construct, but should also consider their 
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Chapter 2  •  Higher-Order Constructs  41

potential application in a nomological network of constructs embedded in a structural 

model (Becker, Klein, & Wetzels, 2012).

Specifying Higher-Order Constructs

Overview

PLS-SEM allows the specification and estimation of all higher-order construct 

types, as shown in Exhibit 2.3. However, the specific type of HOC demands care-

ful consideration when specifying and estimating the model, since PLS-SEM 

requires each construct in the PLS path model to have at least one indicator in 

its measurement model. This necessity holds not only for LOCs but also for the 

HOC, which is an abstract representation of the conceptual variable under con-

sideration. As such, the nature of a higher-order construct in PLS-SEM is different 

from that in covariance-based SEM (CB-SEM), where the HOC has no indicators 

in its measurement model. For this reason, higher-order constructs are sometimes 

called phantom variables in CB-SEM.

To handle the measurement issue of higher-order constructs in PLS-SEM, 

researchers can draw on four approaches. In the repeated indicators approach, all indi-

cators of the LOCs are assigned to the measurement model of the HOC (Lohmöller, 

1989, Chapter 3; Wold, 1982). In the second-order model examples in Exhibit 2.3, the 

repeated indicators approach would use the indicators x
1
 to x

9
 of the LOCs to establish 

the measurement model of the HOC. Consequently, the indicators are used twice: 

once for the LOCs and again for the HOC. Becker, Klein, and Wetzels (2012) intro-

duced the extended repeated indicators approach to handle problems that emerge 

when the HOC in a reflective-formative or formative-formative higher-order construct 

has one or more antecedent construct(s). In this case, the LOCs fully explain the vari-

ance of the HOC, producing an R2 ≈ 1.0. However, with all the HOC’s variance being 

explained by its LOCs, there is no variance left to be explained by an antecedent con-

struct. As a consequence, any path relationship from an antecedent construct to the 

higher-order construct (i.e., to the HOC) will be close to zero and nonsignificant by 

design.

Finally, researchers have proposed the embedded (Agarwal & Karahanna, 2000) 

and disjoint (Wilson, 2010) two-stage approaches, which use construct scores gener-

ated in the first stage as input for the model computation in the second stage. Since 

all approaches generally yield similar results (Cheah, Ting, Ramayah, Memon et al., 

2019), there is often no compelling reason to prefer one over the other. However, as 

the two-stage approach resolves problems that occur in specific model constellations 

when using the (extended) repeated indicators approach and because of their simple 

implementation in the SmartPLS 4 software, Becker, Cheah, Gholamzade, Ringle et 

al. (2023) recommend routinely drawing on the two-stage approaches. We, therefore, 

focus our discussions on the two-stage approaches (i.e., embedded and disjoint) while 

mentioning the (extended) repeated indicators’ approach where needed.
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42  Advanced Issues in PLS-SEM

The Embedded Two-Stage Approach

The first stage of the embedded two-stage approach (Agarwal & Karahanna, 2000) 

corresponds to the standard repeated indicators approach in that all indicators of the 

LOCs are assigned to the HOC’s measurement model. Exhibit 2.4 shows such a set-up 

in a model where a Type II higher-order construct with three LOCs (Y
1
 – Y

3
) is embed-

ded in a path model with one antecedent construct (Y
5
) and one criterion construct 

(Y
6
). As can be seen, all indicators of the LOCs (x

1
 – x

9
) are repeated in the measure-

ment model of the HOC (Y
4
). Stage 1 of the embedded two-stage approach entails esti-

mating the model in Exhibit 2.4 (left panel), but instead of interpreting the estimates, 

researchers need to save the construct scores that result from this analysis.

In Stage 2, these construct scores are used as single-item indicators in the HOC’s 

measurement model as shown in the right panel of Exhibit 2.4. That is, the HOC 

Y
4
 is measured with three formative indicators capturing the construct scores of Y

1
, 

Y
2
, and Y

3
 from Stage 1. Except for the HOC, all other constructs in the model (e.g., 

Y
5
 in Exhibit 2.4) are measured with single items that capture each construct’s scores 

from the previous stage. Importantly, when using the embedded two-stage approach, 

the entire path model must already be considered in Stage 1. It is not permissible to 

estimate the higher-order construct as a stand-alone construct in the first stage of the 

embedded two-stage approach and successively integrate it into the full path model.
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EXHIBIT 2.4 ■    The Embedded Two-Stage Approach
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Chapter 2  •  Higher-Order Constructs  43

The Disjoint Two-Stage Approach

The disjoint two-stage approach (Wilson, 2010) differs from the embedded two-stage 

approach in the specification of both stages. Rather than using the repeated indicators 

approach in Stage 1, the disjoint two-stage approach considers only the LOCs of the 

higher-order construct (i.e., without the HOC) in the path model. These are directly 

linked to all other constructs that the higher-order construct is theoretically related to 

(Exhibit 2.5, left panel). We then need to only save the construct scores of the LOCs 

(e.g., the scores of the constructs Y
1
, Y

2
, and Y

3
 similar to the previous example).

In Stage 2, these scores are then used to establish the HOC’s measurement model. 

However, different from the embedded two-stage approach, all other constructs in 

the path model are estimated using their standard multi-item measures as in Stage 1 

(Exhibit 2.5, right panel).

Recommendations

The two-stage approaches offer researchers more modeling flexibility than the 

(extended) repeated indicators approach. For example, they allow assessing the 
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EXHIBIT 2.5 ■    The Disjoint Two-Stage Approach
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44  Advanced Issues in PLS-SEM

higher-order construct’s measurement specification on the grounds of a confirmatory 

tetrad analysis (CTA-PLS; see Chapter 3). Using the construct scores of the LOCs from 

Stage 1 as input for the measurement model specification in Stage 2, the CTA-PLS 

assesses the covariance structure of the HOC’s measurement model to test whether 

the HOC should be specified reflectively or formatively. Such an assessment is not fea-

sible with the repeated indicators approach because the CTA-PLS—as implemented 

in software programs, such as SmartPLS 4—considers the covariances only in the 

measurement models and not among the constructs. Based on the CTA-PLS results, 

researchers gain additional insights regarding the higher-order construct’s measure-

ment specification.

While the results of these two approaches do not differ significantly (Cheah, Ting, 

Ramayah, Memon, Cham, & Ciavolino, 2019), we recommend using the disjoint 

two-stage approach, as it allows for validating the entire path model on the grounds 

of the original construct measures in Stage 2 (Becker, Cheah, Gholamzade, Ringle 

et al., 2023). For example, researchers can use the PLS
predict

 procedure (Shmueli, Ray, 

Velasquez Estrada, & Chatla, 2016; Shmueli, Sarstedt, Hair, Cheah, Ting, & Ringle, 

2019) or the cross-validated predictive ability test (Liengaard, Sharma, Hult, Jensen, 

Sarstedt, Hair, & Ringle, 2021; Sharma, Liengaard, Hair, Sarstedt, & Ringle, 2023) 

to estimate the model’s predictive power on an indicator level. This sets the disjoint 

approach apart from the embedded two-stage approach, which is restricted to vali-

dating the measurement models in a model that includes the HOC with its repeated 

indicators (Exhibit 2.4, left panel; i.e., this model set-up, however, only serves identi-

fication purposes and does not fully correspond to the path model as hypothesized by 

the researcher). In addition, the estimates of the relationships between the HOC and 

the LOCs in Stage 1 of the embedded two-stage approach can be adversely impacted 

by unevenly distributed numbers of indicators in the LOCs. If, for example, in a reflec-

tive formative higher-order construct, one LOC is measured with more indicators than 

the other LOCs, its weight for forming the HOC will be higher due to the repetition of 

indicators in the HOC’s measurement model. The weight estimate can therefore paint 

a misleading picture of the LOC’s relative relevance for forming the HOC. In light of 

the above, researchers should draw on the disjoint two-stage approach when specifying 

higher-order constructs.

Estimating Higher-Order Constructs

The PLS-SEM algorithm draws on two modes to estimate the indicator weights that 

represent each indicator’s relative contribution to forming a construct (Chapter 1). In 

Mode A indicator weight estimates correspond to the bivariate correlations between 

each indicator and the construct (i.e., correlation weights). In contrast, Mode B com-

putes indicators by regressing each construct on its associated indicators (i.e., regres-

sion weights). While researchers typically use Mode A to estimate reflectively specified 

measurement models and Mode B to estimate formatively specified measurement 
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Chapter 2  •  Higher-Order Constructs  45

models (Hair, Hult, Ringle, & Sarstedt, 2022), Becker, Klein, and Wetzels (2012) 

show that the choice of measurement mode should consider the relationship between 

the HOC and the LOCs rather than the operationalization of the HOC when apply-

ing the repeated indicators approach. Specifically, their simulation study shows that 

Mode B estimation of the HOC in a reflective-formative type higher-order construct 

produces the smallest parameter estimation bias. Hence, even though the (repeated) 

indicators identifying the HOC are specified reflectively, researchers should use Mode 

B for estimating these repeated indicators on the HOC. In light of these findings, 

researchers should use Mode A for reflectively specified higher-order constructs (i.e., 

reflective-reflective and formative-reflective types) and Mode B for formatively speci-

fied higher-order constructs (i.e., reflective-formative and formative-formative types) 

when estimating the model in Stage 1 of the embedded two-stage approach. In con-

trast, the disjoint two-stage approach should be estimated using the standard settings 

on both stages; that is, Mode A for reflectively specified measurement models and 

Mode B for formatively specified measurement models.

Finally, Becker, Klein, and Wetzels (2012) show that the path weighting scheme 

(Lohmöller, 1989, Chapters 2) to estimate the PLS path model produces the overall 

best parameter recovery in formatively specified higher-order constructs (i.e., reflec-

tive-formative and formative-formative types). Even though more recent research 

has not extended Becker, Klein, and Wetzels’s (2012) study in this regard, we expect 

their findings generalize to reflectively specified higher-order constructs (i.e., reflec-

tive-reflective and formative-reflective types). Hence, we recommend using the path 

weighting scheme as the default setting when estimating higher-order constructs in 

PLS-SEM.

Validating Higher-Order Constructs

When validating higher-order constructs, the same model evaluation criteria generally 

apply as for any PLS-SEM analysis (Hair, Howard, & Nitzl, 2020; Hair, Hult, Ringle, 

& Sarstedt, 2022; Ramayah, Cheah, Chuah, Ting, & Memon, 2016). However, 

researchers need to consider two additional measurement models in higher-order 

constructs for which the evaluation criteria apply: (1) the measurement models of the 

LOCs, and (2) the measurement model of the higher-order construct as a whole, rep-

resented by the relationships between the HOC and its LOCs. In light of our previous 

recommendations, we focus our discussion of model validation on the embedded and 

disjoint two-stage approaches. See Sarstedt, Hair, Cheah, Becker, and Ringle (2019) 

and Hair, Moisescu, Radomir, Ringle et al. (2020) for a discussion of model validation 

under the (extended) repeated indicators approach.

The procedures and criteria that have been recommended for the measurement 

models and the structural model also apply to the PLS-SEM results assessment of the 

two-stage approach (Hair, Howard, & Nitzl, 2020; Hair, Hult, Ringle, & Sarstedt, 

2022; Ramayah, Cheah, Chuah, Ting, & Memon, 2016). That is, the results evaluation 
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46  Advanced Issues in PLS-SEM

in Stage 1 considers all measurement models, including those of the LOCs, but with 

a single exception. Specifically, when applying the embedded two-stage approach 

the higher-order construct must not be evaluated in terms of its (repeated) indicators 

directly associated with the HOC (x
1
-x

9
 in Exhibit 2.4). These indicators only ensure 

that the higher-order construct is identified—they do not represent its actual measure-

ment model. In fact, the repetition of the LOCs’ indicators in the measurement model 

of the HOC automatically violates discriminant validity as evidenced in high HTMT 

values. Similarly, the set of indicators assigned to the HOC is not unidimensional by 

design as they stem from LOCs that represent different concepts.

After model estimation in Stage 2, all measurement models need to be assessed 

again in terms of reliability and validity, even if their reliability and validity have 

already been established in the Stage 1 analysis. The reason is that the inclusion of the 

higher-order construct in Stage 2 changes the model set-up, which entails changes in 

the model estimates. Generally, however, these changes will not result in reliability or 

validity issues if these have been confirmed in the Stage 1 analysis. More importantly, 

this assessment also needs to take the newly established higher-order construct into 

account whose measurement model is defined by the relationships between its indica-

tors, which come in the form of construct scores derived from Stage 1. That is, in cases 

of Type I and Type III models, the standard evaluation criteria for reflective measure-

ment models need to be applied, while for Type II and Type IV models, the evaluation 

criteria for formative measurement models need to be applied.

Once the measures’ reliability and validity have been established, the structural 

model results need to be analyzed, drawing on the standard criteria as documented in, 

for example, Hair, Hult, Ringle, and Sarstedt (2022). Researchers need to pay particu-

lar attention to any structural model assessment that involves interpreting the indica-

tors, such as when using PLS
predict

 (Shmueli, Ray, Velasquez-Estrada, & Chatla, 2016; 

Shmueli, Sarstedt, Hair, Cheah, Ting, & Ringle, 2019), or running an IPMA (Ringle 

& Sarstedt, 2016). Specifically, in the case of the embedded two-stage approach, cor-

responding structural model assessments should be carried out in the first stage. The 

reason is that Stage 2 uses the construct scores of Stage 1 as single items, which renders 

validation on the grounds of the items meaningless. In contrast, the disjoint two-stage 

approach uses multiple items in the second stage, which permits the application of all 

structural model assessment criteria. Hence, when using the disjoint two-stage approach, 

researchers should assess the structural model on the grounds of the Stage 2 results. As 

with the measurement model assessment, this evaluation must disregard the HOC.

Finally, situations occur in which researchers are uncertain whether or not to mea-

sure a theoretical concept by means of a higher-order construct. To make a decision, 

Becker, Cheah, Gholamzade, Ringle et al. (2023) suggest comparing models with and 

without the higher-order construct. For this purpose, they can use model selection 

criteria that are well known from the regression literature. Sharma, Sarstedt, Shmueli, 

Kim, and Thiele (2019) and Sharma, Shmueli, Sarstedt, Danks, and Ray (2018) com-

pared the efficacy of various metrics for model comparison tasks and found that the 
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Chapter 2  •  Higher-Order Constructs  47

Bayesian information criterion (BIC) and the criterion suggested by Geweke and 

Meese (GM) perform well in selecting a parsimonious model that fits the data well 

and has a good predictive power. As the BIC is easier to compute, extant literature 

recommends focusing on this criterion (Hair, Hult, Ringle, & Sarstedt, 2022, Chapter 

6). If this analysis suggests the model with the higher-order construct produces lower 

BIC values compared to the model without the higher-order specification, researchers 

should consider the higher-order construct in their model specification and estima-

tion. In addition, researchers can compute BIC-based Akaike weights, which offer rela-

tive weights of evidence in favor of the models under consideration (Danks, Sharma, & 

Sarstedt, 2020). Alternatively, researchers can compare the model specifications with 

regard to their predictive power using Liengaard, Sharma, Hult, Jensen, Sarstedt, Hair, 

& Ringle’s (2021) cross-validated predictive ability test (see also Sharma, Liengaard, 

Hair, Sarstedt, & Ringle, 2023) to empirically justify its consideration.

Rules of Thumb

The previous descriptions have shown that higher-order constructs are a useful means 

to retain information while making the structural model more parsimonious. At the 

same time, their specification and particularly their validation requires special care. 

In Exhibit 2.6, we summarize the rules of thumb to consider when using higher-order 

constructs.

CASE STUDY ILLUSTRATION

Drawing on the case study model and data presented in Chapter 1, we outline how 

to create a higher-order construct for the construct corporate reputation. The corpo-

rate reputation model focuses on the COMP and LIKE constructs representing two 

separate dimensions of corporate reputation (REPU). Instead of modeling the distinct 

Aspect Rules of Thumb

Conceptualization  • Closely examine and describe the theoretical and conceptual 

foundations of the higher-order construct type.

Specification  • To determine the results, the higher-order construct must be 

embedded in the nomological network of the underlying path model 

with its predecessor or successor constructs; it is not permissible 

to estimate the higher-order construct as a stand-alone construct 

in the first stage of the embedded two-stage approach.

 • Use the two-stage approaches to specify the higher-order 

construct. The disjoint two-stage approach should be preferred 

due to its greater flexibility in model validation.

EXHIBIT 2.6 ■    Rules of Thumb for Using Higher-order Constructs

(Continued)
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48  Advanced Issues in PLS-SEM

impact of the antecedent constructs (i.e., ATTR, CSOR, PERF, and QUAL) on COMP 

and LIKE as well as their effect on the criterion variables (i.e., CUSA and CUSL) sep-

arately, these two constructs could be handled as subdimensions of a more general 

REPU construct. By establishing a second-order construct with COMP and LIKE as 

LOCs, the PLS path model becomes more parsimonious. From a measurement theory 

perspective, COMP and LIKE determine REPU (e.g., Eberl, 2010), therefore inferring 

a reflective-formative higher-order construct type specification. Since we deal with 

only two LOCs, the CTA-PLS procedure, which would require at least four LOCs (see 

Chapter 3 for more detail), cannot provide additional empirical substantiation con-

cerning the direction of the relationship between the LOCs and the HOC. For the 

empirical illustration, however, we consider REPU ’s reflective-formative higher-order 

construct type specification.

To establish the reflective-formative higher-order construct REPU, we draw on the 

disjoint two-stage approach. Stage 1 requires estimating the model with the LOCs 

(COMP and LIKE), but without the HOC REPU, which will be included in Stage 

2—just like in the original corporate reputation model. Navigate to the SmartPLS 

Aspect Rules of Thumb

Estimation  • Use Mode A to estimate the HOC of a reflective-reflective and 

formative-reflective type higher-order construct in Stage 1 of the 

embedded two-stage approach.

 • Use Mode B to estimate the HOC of a reflective-formative and 

formative-formative type higher-order construct in Stage 1 of the 

embedded two-stage approach.

 • Use the path weighting scheme.

Validation  • Preferably, use the disjoint two-stage approach and validate 

the measurement models’ reliability and validity in both stages, 

including those of the LOCs.

 • In case of using the embedded two-stage approach, do not consider 

the HOC’s measurement model, operationalized by repeated 

indicators, in Stage 1. Also, when using the embedded two-stage 

approach, apply criteria for assessing the model’s explanatory and 

predictive power in Stage 1.

 • Apply the standard structural model assessment criteria and 

procedures for assessing the relationships between the higher-

order construct and any predecessor and successor constructs.

 • Compare the model with the higher-order construct to the model 

without the higher-order construct (e.g., by selecting the model 

specification that produces lower BIC values).

EXHIBIT 2.6 ■    Rules of Thumb for Using Higher-order Constructs 

(Continued)
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Chapter 2  •  Higher-Order Constructs  49

Workspace, and double-click on Corporate reputation model in the Example – 

Corporate reputation (advanced) project. To estimate this model, click on Calculate 

→ PLS-SEM algorithm in the SmartPLS menu. Alternatively, we can left-click on the 

wheel symbol with the label Calculate in the tool bar. Run the PLS-SEM algorithm 

using the default settings (i.e., path weighting scheme, standardized results, and default 

initial weights) and make sure to check the box Open report in the lower right corner. 

After clicking the Start calculation button, SmartPLS opens the Results report. We 

find that all construct measures meet the required standards in terms of reliability and 

validity. For example, measures of LIKE yield satisfactory levels of convergent valid-

ity (AVE = 0.747) and internal consistency reliability (Cronbach’s alpha = 0.831; ρ
A 

= 

0.836; ρ
C 

= 0.899). Similarly, the measures of COMP exhibit convergent validity (AVE 

= 0.688) and internal consistency reliability (Cronbach’s alpha = 0.776; ρ
A 
= 0.786; ρ

C 
= 

0.869). For a detailed overview of the model evaluations of all reflective and formative 

measurement models, see Chapters 4 and 5 in Hair, Hult, Ringle, and Sarstedt (2022).

On these grounds, we can proceed to Stage 2 of the disjoint two-stage approach, 

which requires replacing the LOCs with the HOC, the latter of which is measured 

using the construct scores of COMP and LIKE from Stage 1. SmartPLS allows to con-

veniently process the construct scores from a previous algorithm run and include them 

in a separate dataset that is being added to an existing project. To do so, select the 

Create data file option in the tool bar of the Results report. In the menu that opens, 

select the Example – Corporate reputation (advanced) project, the file name (e.g., 

HCM disjoint 2nd stage), and check the boxes next to Manifest variable scores (i.e., 

to include the indicators used in the model in the new dataset), Latent variable scores 

(i.e., to include new variables for the construct scores in the new dataset), and Other 

(i.e., to include all other variables available in the new dataset). Then, left-click on the 

Create button. Click on the orange arrow button labeled Edit in the tool bar to return 

to the Modeling window. Next, click on the orange arrow button labeled Back to 

enter the Workspace view where the new dataset appears under the selected project. 

In the Example – Corporate reputation (advanced) project, we now see the newly 

created HCM disjoint 2nd stage dataset. Next, right-click on Corporate reputa-

tion model. In the menu that opens, select the Duplicate option. A dialog opens that 

allows us to enter a name for the copy of the newly added model. Use a self-explaining 

name such as HCM reflective-formative 2nd stage. After pressing the Create but-

ton, the new model, which is a duplicate of the corporate reputation model shown 

in Corporate reputation model, appears in the project displayed in the Workspace. 

Double-click on the HCM reflective-formative 2nd stage model to open it in the 

modeling window. On the left-hand side, above the list of indicators, left-click on 

the Select dataset button and choose the newly created dataset (i.e., HCM disjoint 

2nd stage). The HCM reflective-formative 2nd stage model already includes the 

final model with the HOC. In case we want to set up the Stage 2 model ourselves, we 

need to delete the COMP and LIKE constructs, and establish a new construct REPU, 

measured formatively by means of the indicators labeled LV scores – COMP and LV 
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50  Advanced Issues in PLS-SEM

scores – LIKE. Note that by default, newly added constructs have a reflective mea-

surement model in SmartPLS. In order to switch to a formative specification, right-

click on REPU and select the Invert measurement model option. Finally, we need to 

add paths from ATTR, CSOR, PERF, and QUAL to REPU as well as from REPU to 

CUSA and CUSL. The final model should look like the HCM reflective-formative 

2nd stage model in Exhibit 2.7. Estimate the model by going to Calculate → PLS-

SEM algorithm in the SmartPLS tool bar. Using the Results report that opens, we 

can now assess the reflective and formative measurement models. The results of the 

regular constructs are very similar to those reported in Chapters 4 and 5 in Hair, Hult, 

Ringle, and Sarstedt (2022). Therefore, in the following, our assessment will focus on 

the higher-order construct.

The first step in formative measurement model assessment is to establish the 

higher-order construct’s convergent validity by means of a redundancy analysis 

(Cheah, Sarstedt, Ringle, Ramayah, & Ting, 2018; Hair, Hult, Ringle, & Sarstedt, 

2022, Chapter 5). For this purpose, select the project in the Workspace and left-click 

on the PLS-SEM button in the tool bar to create a new model. Choose an intuitive 

name, such as HCM redundancy analysis REPU, and left-click on Save. An empty 

modeling window will appear next. On the left-hand side, above the indicators, make 

sure the HCM disjoint 2nd stage dataset has been selected. Next, drag and drop the 

two REPU indicators (LV scores–COMP and LV scores-LIKE) to the modeling win-

dow and assign a meaningful name (e.g., REPU_F in which F stands for “formative”). 

Make sure to change the construct’s measurement model to formative. Next, establish 

a construct labeled REPU_G in which G stands for “global,” indicating the construct 

is measured by means of the global single item repu_global (“[company] has a high 

reputation”). Then, draw a path from REPU_F to REPU_G. Estimating the model by 

going to Calculate → PLS-SEM algorithm will produce the results shown in Exhibit 

2.8. Since the relationship between REPU_F and REPU_G is above the threshold of 

0.7, we find support for the higher-order construct’s convergent validity.

To continue the results assessment, we return to the HCM reflective-formative 

2nd stage model, estimate it again, and check for potential collinearity among the 

LOCs. To do so, go to Quality Criteria → Collinearity Statistics (VIF). We find 

that the VIF value of LV scores–COMP and LV scores–LIKE (1.686) is considerably 

below the threshold of 3, providing support that collinearity is not a critical issue. The 

final step requires assessing the higher-order construct’s indicator weights in terms of 

their significance and relevance. Run the bootstrapping procedure with 10,000 sub-

samples, the Most important (faster) results computation option, the Percentile 

bootstrap confidence interval, Two tailed testing, and a significance level of 0.05. 

In the Results report that opens, navigate to Final results → Outer weights coeffi-

cients → Confidence intervals bias corrected. The results show that both weights are 

significant as both confidence intervals’ lower bounds are clearly larger than zero. We 

also find that the impact of LIKE (0.682) is stronger than the one of COMP (0.416), 

further emphasizing the relevance of reputation’s affective dimension.
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EXHIBIT 2.7 ■    Reflective-Formative Higher-Order Construct Example (Stage 2 Model)
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In terms of the structural model relationships, we find that the results of the 

reflective-formative higher-order construct also meet all structural model evaluation 

criteria (Hair, Hult. Ringle, & Sarstedt, 2022). All structural model relationships are 

significant (p ≤ 0.01). The antecedent constructs QUAL (0.440) and PERF (0.207) 

have the strongest effects on REPU, while CSOR (0.139) and ATTR (0.150) are less 

relevant (Exhibit 2.7). REPU itself has a strong effect on CUSA (0.537), which, in turn, 

is strongly related to CUSL (0.514). The direct relationship between REPU and CUSL 

is somewhat weaker (0.326). The R2 values of all the endogenous constructs (i.e., 0.700 

for REPU, 0.288 for CUSA, and 0.550 for CUSL) are relatively high when taking the 

number of antecedent constructs into account. The results from PLS
predict

 (Shmueli, 

Ray, Velasquez Estrada et al. 2016; Shmueli, Sarstedt, Hair, Cheah et al. 2019) support 

the model’s predictive power with regard to its final target construct CUSL as all its 

indicators achieve lower RMSE values than the linear benchmark model.

Finally, we assess which model—with or without the higher-order construct 

REPU—has a better model fit. To do so, go to the Results report of the PLS-SEM 

algorithm and save the model estimates of the HCM reflective-formative 2nd stage 

model by clicking on the Save button in the toolbar and choosing a self-explana-

tory name (e.g., HCM reflective-formative 2nd stage – PLS). Next, return to the 

SmartPLS Workspace, open the Corporate reputation model, estimate it using the 

default settings and also save the results with a self-explanatory name (e.g., Corporate 

reputation model – PLS). Next, in the Results Report of the Corporate reputation 

model, click on the Compare button in the toolbar. Under Saved reports → Example 

corporate reputation (advanced), select the saved report HCM reflective-formative 

2nd stage – PLS. In the upper right area of the Compare view that opens, check the 

box next to Synchronize navigation. Then, on the left side, click on one of the Select 

detail button above the displayed model and navigate to Quality Criteria → Model 

selection criteria to obtain the results as displayed in Exhibit 2.9. The BIC value of the 

target construct CUSL is lower for the Corporate reputation model (–261.602) than 

for the HCM reflective-formative 2nd stage model (–258.515).

Analogously, we compare the models in terms of their predictive power. To do so, 

go to Calculate → PLSpredict and run the procedure using the default settings. In the 

Results report, go to Final results → CVPAT → PLS-SEM vs. Indicator average 

(IA). We find that for the model’s target construct CUSL, the corporate reputation 

model’s PLS-SEM results have a smaller average loss (as an expression of the prediction 

LV scores - COMP

LV scores - LIKE

REPU_F REPU_G

0.811 repu_global
0.377

0.716
0.900 1.000

EXHIBIT 2.8 ■    REPU’s Redundancy Analysis Results
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error) over the indicator average benchmark—as expressed by an average loss differ-

ence of PLS-SEM and the indicator average (IA) with a value of –0.561. The superior 

predictive capabilities of the PLS-SEM results compared to the IA benchmark also 

apply to the reflective-formative HCM model and are slightly more pronounced (i.e., 

with a value of –0.576 for the average loss difference of PLS-SEM and IA). The same 

finding holds for CUSL and the PLS-SEM vs. Linear model (LM) outcome with 

–0.082 for the Corporate reputation model and –0.083 for the HCM reflective-

formative model. To summarize, the results suggest that both model specifications 

perform very similarly with regard to model fit and predictive power. Hence, research-

ers may choose either specification, for example, depending on whether they want to 

include reputation as a distinct concept in their model.

SUMMARY

 • Understand the usefulness of higher-order constructs. A higher-order 

construct embraces a more general component (i.e., HOC), measured at a higher 

level of abstraction, while simultaneously including several subcomponents (i.e., 

the LOCs), which cover more concrete traits of this conceptual variable under 

consideration. Higher-order constructs enable reducing the number of structural 

model relationships, making the PLS path model more parsimonious, while 

increasing the bandwidth of content covered by the respective constructs.

 • Appreciate the different types of higher-order constructs and understand 

how to specify them in PLS-SEM. The use of higher-order constructs builds 

on carefully established theoretical and conceptual considerations. On these 

grounds, researchers choose from four major higher-order construct types. Each 

of these types depicts the specific relationship between the HOC and the LOCs 

EXHIBIT 2.9 ■    Comparison of Model Selection Criteria
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as well as the measurement model used to operationalize the constructs on the 

lower-order level: reflective-reflective, reflective-formative, formative-reflective, 

and formative-formative. Generally, the HOC of a reflective-reflective and 

formative-reflective higher-order construct represents a more general construct 

that—similar to reflective measurement models—simultaneously explains all 

the underlying LOCs. Conversely, the HOC is formed by the LOCs in reflective-

formative and formative-formative higher-order constructs, which are similar to 

formative measurement models. To specify a higher-order construct, researchers 

should draw on the disjoint two-stage approach. When estimating higher-order 

constricts in PLS-SEM, researchers need to consider further aspects, which relate 

to the PLS-SEM algorithm weighting scheme, and the use of Mode A and Mode 

B weighting.

 • Comprehend how to estimate higher-order constructs using the SmartPLS 

software and how to interpret the results. Researchers can use SmartPLS to 

model any of the four higher-order construct types introduced in this chapter. 

When analyzing the results using the disjoint two-stage approach, researchers 

need to establish the constructs’ reliability and validity in Stage 1. Stage 2 

concerns the measurement model validation of the higher-order construct and 

the structural model assessment.

REVIEW QUESTIONS

 1. What is a higher-order construct? Describe each of the four different types of 

higher-order constructs introduced in this chapter.

 2. Which criteria are relevant in the assessment of the different higher-order 

construct types?

 3. What are the consequences of having substantially different numbers of 

indicators in the LOCs when specifying the higher-order construct using the 

embedded two-stage approach?

 4. Should discriminant validity between lower- and higher-order components be 

evaluated when using the embedded two-stage approach?

 5. Which criteria can researchers draw upon when comparing a model with a 

higher-order construct to a model without the higher-order construct?

CRITICAL THINKING QUESTIONS

 1. Discuss the advantages and disadvantages of higher-order constructs.

 2. Can every concept be measured at different levels of abstraction?
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 3. Screen the literature and identify concepts that are commonly measured using a 

higher-order construct.

 4. When would we use the embedded vs. the disjoint two-stage approach?

 5. Do higher-order constructs help resolve discriminant validity problems in 

PLS-SEM?

KEY TERMS

Bandwidth-fidelity tradeoff

Bottom-up approach

Collect model

Disjoint two-stage approach

Embedded two-stage approach

Extended repeated indicators approach

Formative-formative higher-order 

construct

Formative-reflective higher-order 

construct

Hierarchical common factor model

Hierarchical component model

Higher-order component (HOC)

Higher-order construct

Higher-order model

Jangle fallacy

Lower-order components (LOCs)

Multiple battery model

Reflective-formative higher-order 

construct

Reflective-reflective higher-order 

construct

Repeated indicators approach

Second-order construct

Spread model

Stand-alone higher-order construct

Top-down approach

Type I higher-order construct

Type II higher-order construct

Type III higher-order construct

Type IV higher-order construct
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