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AN OVERVIEW OF 

RECENT AND EMERGING 

DEVELOPMENTS 

IN PLS-SEM

LEARNING OUTCOMES

 1. Understand the origins and evolution of PLS-SEM.

 2. Comprehend model specification in a PLS-SEM framework.

 3. Describe the PLS-SEM algorithm’s basic functioning principles.

 4. Understand PLS-SEM’s key characteristics vis-à-vis CB-SEM.

CHAPTER PREVIEW

Along with the recent surge in applications of partial least squares structural equation 

modeling (PLS-SEM), methodological research has prompted numerous extensions of 

the original method that vastly increase its scope. In this chapter, we first provide an 

overview of the origins and evolution of PLS-SEM. This foundation will enable us to 

better understand why the method was slow to be adopted in the beginning, but has been 

increasingly applied in recent years across many social science disciplines, particularly in 

the various fields of business administration. We then discuss different aspects related to 

the specification of measurement and structural models, followed by a brief introduction 

of the PLS-SEM algorithm and selected extensions. Several considerations, which have 

their roots in the characteristics of the method, are important when applying PLS-SEM. 

We therefore discuss important characteristics of the PLS-SEM method that relate to the 

underlying measurement philosophy and the implications that arise from the way the 

algorithm estimates the model parameters. The chapter concludes with the introduction 

of a case study used throughout the remainder of this book.

ORIGINS AND EVOLUTION OF PLS-SEM

The precursors to the PLS-SEM method were two iterative procedures that used least 

squares estimation to develop solutions for single and multicomponent models, and 

also for the method of canonical correlation (Wold, 1966). Further development of 
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2  Advanced Issues in PLS-SEM

these procedures by Herman Wold led to the nonlinear iterative partial least squares 

(NIPALS) algorithm (Wold, 1973). A subsequent generalized version of the PLS-

SEM algorithm focused on establishing and including latent variables in path models 

(Lohmöller, 1989, Chapter 2; Wold, 1980, 1982, 1985).

Several PLS methods evolved from Wold’s generalized least squares algorithm 

(Mateos-Aparicio, 2011). One method is principal components regression (Hotelling, 

1957; Jolliffe, 1982; Kendall, 1957; McCallum 1970), which performs a principal com-

ponent analysis on the independent variables in which the model components are used 

as explanatory variables for a single dependent variable. However, principal compo-

nents regression focuses on reducing the dimensionality of the independent variables 

only without considering the relationship between the independent and dependent 

variables.

Another method is the partial least squares regression (PLS-R), which was origi-

nally designed to reduce the issue of collinearity in regression models (Abdi, 2010; 

Kiers & Smilde, 2007; Wold, Ruhe, Wold, & Dunn, 1984). PLS-R focuses on the 

dimension reduction of the independent variables in a regression model intending to 

remove collinearity from the predictor variables. By doing so, the method optimizes 

the variance extracted from the independent variables while simultaneously maximiz-

ing the variance explained in the dependent variables. More precisely, PLS-R relies on 

a principal component analysis that extracts linear composites of the independent vari-

ables and their respective scores. Its aim is to reduce the dimensionality of the indepen-

dent variables, while taking the relationship between the independent and dependent 

variables into consideration. As a result, PLS-R enables researchers to estimate models 

with more independent variables than observations in the dataset (Valencia & Diaz-

Llanos, 2003).

Interestingly, PLS-R was not developed by Herman Wold but by his son, Svante 

Wold (e.g., Wold, Sjöström, & Eriksson, 2001), who worked in the field of analytical 

chemistry, known today as chemometrics. Together with Harald Martens, he adapted 

NIPALS to analyze chemical data. In addition to addressing the problem of multi-

collinearity in multiple regression models, their method solved the problem that arises 

when the number of variables is larger than the number of respondents (Martens, 

Martens, & Wold, 1983).

A third method that emerged from Wold’s (1980) generalized PLS algorithm 

for estimating relationships between constructs and their indicators as well as 

between constructs (Lohmöller, 1989; Wold, 1982), also referred to as partial 

least squares path modeling (e.g., Esposito Vinzi, Trinchera, & Amato, 2010; 

Tenenhaus, Esposito Vinzi, Chatelin, & Lauro, 2005), the PLS approach to struc-

tural equation modeling (e.g., Chin, 1998), and partial least squares structural 

equation modeling (PLS-SEM; e.g., Hair, Ringle, & Sarstedt, 2011; Sarstedt, Hair, 

& Ringle, 2023). PLS-SEM determines the parameters of a set of equations in a 

path model by combining principal components analysis to assess the measure-

ment models with path analysis to estimate the relationships between constructs 
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  3

(i.e., latent variables). Wold (1982, 1985) proposed his “soft modeling basic 

design” underlying PLS-SEM as an alternative to Jöreskog’s (1973) covariance-

based structural equation modeling (CB-SEM). The alternative CB-SEM method 

has been labeled as hard modeling because of its more stringent assumptions in 

terms of data distribution and requiring much larger sample sizes (e.g., Falk & 

Miller, 1992). Importantly, for PLS-SEM “it is not the concepts nor the models nor 

the estimation techniques which are ‘soft,’ only the distributional assumptions” 

(Lohmöller, 1989, p. 64). While both methods were developed at about the same 

time, CB-SEM became much more widely applied because of its early availability 

through the LISREL software in the late 1970s. In contrast, the first software for 

PLS-SEM was LVPLS, which appeared in the mid-1980s (Lohmöller, 1984, 1987). 

But this initial software was not very user-friendly, and it was not until Chin’s 

(1994) PLS-Graph software in the mid-1990s that PLS-SEM experienced wider 

application. With the release of SmartPLS 2 in 2005 (Ringle, Wende, & Will, 

2005), SmartPLS 3 in 2015 (Ringle, Wende, & Becker, 2015), and SmartPLS 4 in 

2022 (Ringle, Wende, & Becker, 2022), PLS-SEM applications increased expo-

nentially (Sarstedt & Cheah, 2019), as evidenced by the popularity of the terms 

“PLS-SEM” and “PLS path modeling” in the Web of Science database in terms of 

articles published and citations (Exhibit 1.1).

Over the last two decades, there have been numerous introductory articles on 

the method (e.g., Chin, 1998; Haenlein & Kaplan, 2004; Hair, Risher, Sarstedt, & 

Ringle, 2019; Nitzl & Chin, 2017; Rigdon, 2013; Roldán & Sánchez-Franco, 2012; 
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EXHIBIT 1.1 ■    Number of PLS-SEM-Related Articles per Year

Note: Number of articles returned from the Web of Science database for the search terms “PLS-SEM” 
and “PLS path modeling” beginning from 2010.
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4  Advanced Issues in PLS-SEM

Tenenhaus, Esposito Vinzi, Chatelin, & Lauro, 2005) as well as review articles exam-

ining how researchers in business and related fields have applied it (Exhibit 1.2). The 

usage of PLS-SEM also expanded into other research areas, such as agriculture, engi-

neering, environmental sciences and ecology, geography, and psychology (Sarstedt, 

2019).

With the increasing maturation of the PLS-SEM field (Hwang, Sarstedt, Cheah, 

& Ringle, 2020; Khan et al., 2019), researchers can draw on a much greater repertoire 

Discipline References

Accounting Lee, Petter, Fayard, & Robinson (2011)

Nitzl (2016)

Entrepreneurship Manley, Hair, Williams, & McDowell (2020)

Family business Sarstedt, Ringle, Smith, Reams, & Hair (2014)

Higher education Ghasemy, Teeroovengadum, Becker, & Ringle (2020)

Hospitality and tourism Ali, Rasoolimanesh, Sarstedt, Ringle, & Ryu (2018)

Do Valle & Assaker (2016)

Usakli & Kucukergin (2018)

Human resource management Ringle, Sarstedt, Mitchell, & Gudergan (2020)

International business research Richter, Sinkovics, Ringle, & Schlägel (2016)

Knowledge management Cepeda-Carrion, Cegarra-Navarro, & Cillo (2019)

Management Hair, Sarstedt, Pieper, & Ringle (2012)

Marketing Hair, Sarstedt, Ringle, & Mena (2012)

Guenther, Ringle, Zaefarian, & Cartwright (2023)

Sarstedt, Hair, Pick, Liengaard, Radomir, & Ringle 

(2022)

Management information systems Hair, Hollingsworth, Randolph, & Chong (2017)

Ringle, Sarstedt, & Straub (2012)

Operations management Bayonne, Marin-Garcia, & Alfalla-Luque (2020)

Peng & Lai (2012)

Psychology Willaby, Costa, Burns, MacCann, & Roberts (2015)

Quality management Magno, Cassia, & Ringle (2022)

Software engineering Russo & Stol (2021)

Supply chain management Kaufmann & Gaeckler (2015)

EXHIBIT 1.2 ■    Review Articles on PLS-SEM Usage
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  5

of advanced modeling, analysis techniques, and robustness checks (e.g., Sarstedt, 

Ringle, Cheah, Ting, Moisescu, & Radomir, 2020) to support their conclusions’ valid-

ity and to identify more complex relationship patterns. For example, methodological 

research has made considerable progress in the treatment of observed heterogeneity in 

the context of moderator analysis (Becker et al., 2023; Memon et al., 2019), multigroup 

analysis (Chin & Dibbern, 2010; Klesel, Schuberth, Niehaves, & Henseler, 2021), 

and invariance assessment (Henseler, Ringle, & Sarstedt, 2016). Researchers have 

also developed novel latent class procedures (Becker, Rai, Ringle, & Völckner, 2013; 

Schlittgen, Ringle, Sarstedt, & Becker, 2016) and guidelines for their use (Sarstedt, 

Ringle, & Hair, 2021). Furthermore, progress has been made in the specification, esti-

mation, and validation of higher order models (Becker, Cheah, Gholamzade, Ringle, 

& Sarstedt, 2023; Sarstedt, Hair, Cheah, Becker, & Ringle, 2019) and nonlinear 

effects (Basco, Hair, Ringle, & Sarstedt, 2021). With these extensions, PLS-SEM has 

become a full-fledged estimator for latent variable models and is capable of handling 

many modeling problems social sciences researchers face today.

MODEL SPECIFICATION

Model specification in PLS-SEM involves two types of sub-models: the structural 

model and the measurement models. The structural model (also referred to as the 

inner model) specifies the relationships between the constructs. Constructs that act 

only as independent variables are referred to as exogenous constructs, whereas those 

that act as dependent variables are called endogenous constructs. The relationships 

between constructs are typically visualized in a path model, such as the one shown in 

Exhibit 1.3.

In this path model, Y
3
 and Y

4
 act as endogenous constructs, while Y

1
 and Y
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 are 

exogenous. The endogenous constructs have error terms z
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 and z
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EXHIBIT 1.3 ■    Partial Least Squares Path Model Example
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6  Advanced Issues in PLS-SEM

which represent the unexplained variance (i.e., the difference between the model’s in-

sample prediction and actual construct scores). The exogenous construct Y
1
 also has an 

error term (z
1
) but in PLS-SEM, this error term is zero by default because of the way the 

method treats the measurement model of this particular construct, which is formative 

in nature (Diamantopoulos, 2011). Therefore, the error term is typically omitted in the 

display of a PLS path model. The other exogenous construct Y
2
 is based on a reflective 

measurement model (i.e., the arrows point from the construct to its indicators) and 

therefore has no error term attached to it.

The structural model relationships in Exhibit 1.3 can be expressed using the fol-

lowing formulas:

   
 Y  

3
  
  
=

  
 p  

1
   ⋅  Y  

1
   +  p  

2
   ⋅  Y  

2
   +  z  

3
    and

    
 Y  

4
  
  
=

  
 p  

3
   ⋅  Y  

2
   +  p  

4
   ⋅  Y  

3
   +  z  

4
  
   

The measurement models (also referred to as outer models) express the relationships 

between each construct and its indicators. There are two broad ways to conceptualize 

measurement models from a measurement theory perspective. The first approach is 

referred to as reflective measurement. In a reflective measurement model, the indica-

tors are considered to be error-prone manifestations of an underlying construct. That 

is, the relationships between the construct and the indicators are likely to include errors. 

Reflective measurement model relationships are represented as arrows going from the 

construct to its indicators. For example, the construct Y
2
 in Exhibit 1.3 has a reflective 

measurement model, which can be expressed in the following way:

  

 x  
4
  

  

=

  

 l  
4
   ⋅  Y  

2
   +  e  

4
   ,

    x  
5
    =   l  

5
   ⋅  Y  

2
   +  e  

5
   , and   

 x  
6
  

  

=

  

 l  
6
   ⋅  Y  

2
   +  e  

6
   .

   

The terms l
4
 to l

6
 are the standardized indicator loadings, which are calculated from 

three bivariate regressions in which each reflective indicator x
4
 to x

6
 acts as a dependent 

variable and the construct Y
2
 as independent variable (i.e., l

4
 to l

6
 simply represent the 

bivariate correlations between construct Y
2
 and each of its indicators x

4
 to x

6
); e

4
 to e

6
 

are the error terms representing the unexplained variance in each regression model. 

Note that there is no regression intercept, as PLS-SEM works with standardized data 

(i.e., the intercept is zero). Reflective indicators (sometimes referred to as effect indi-

cators in the psychometric literature) can be viewed as a representative sample of all 

the possible items available in the conceptual domain of the construct (Nunnally & 

Bernstein, 1994). Since a reflective measurement model requires that all items reflect 

the same construct, indicators associated with a particular construct should be highly 

correlated with each other. In addition, individual items should be interchangeable, 
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  7

and any single item can generally be left out without changing the meaning of the con-

struct, as long as the construct has sufficient reliability. The fact that the relationship 

goes from the construct to its indicators implies that if the evaluation of the latent trait 

changes (e.g., because of a change in the standard of comparison), all indicators will 

change simultaneously—at least to some extent.

The other type of measurement model is formative measurement. In a formative 

measurement model, the indicators form the construct using linear combinations. A 

change in an indicator’s value due to, for example, a change in a respondent’s assessment 

of the trait being captured by the indicator changes the value of the construct. That is, 

variation in the indicators precedes variation in the constuct (Borsboom, Mellenbergh, & 

van Heerden, 2003), which means that, by definition, constructs with a formative mea-

surement model are inextricably tied to their measures (Diamantopoulos, 2006). Besides 

the difference in the relationship between indicator(s) and construct, formative measure-

ment models do not require correlated indicators. Formative measurement model rela-

tionships are represented by arrows leading from the indicators to the construct.

Researchers distinguish between two types of indicators in the context of for-

mative measurement: composite and causal indicators. Composite indicators largely 

correspond to the above definition of formative measurement models in that they 

are combined in a linear way to form a variate, which is also referred to as a compos-

ite in the context of SEM (Bollen, 2011; Bollen & Bauldry, 2011). More precisely, 

the indicators fully form the construct (i.e., the construct’s R² value is 1.0), which 

means the construct has zero error. Composite indicators have often been used to 

measure artifacts, which can be understood as human-made concepts (Henseler, 

2017). Examples of such artifacts in marketing include the retail price index or the 

marketing mix (Hair, Sarstedt, & Ringle, 2019). However, composite indicators can 

also be used to measure attitudes, perceptions, and behavioral intentions (Sarstedt, 

Hair, Ringle, Thiele, & Gudergan, 2016; Rossiter, 2011; Rossiter, 2016), provided 

the indicators have conceptual unity in accordance with a clear theoretical defini-

tion (Gilliam & Voss, 2013). The PLS-SEM algorithm relies solely on the concept of 

composite indicators because of the way the algorithm estimates formative measure-

ment models (e.g., Diamantopoulos, 2011).

Causal indicators also form the construct, but this type of measurement acknowl-

edges that it is unlikely that any set of causal indicators can fully capture every aspect 

of a latent phenomenon (Bollen & Diamantopoulos, 2017; Diamantopoulos & 

Winklhofer, 2001). Therefore, constructs measured with causal indicators have an 

error term, which is assumed to capture all the other causes of the latent variable not 

included in the model (Diamantopoulos, 2006). The use of causal indicators is preva-

lent in CB-SEM, which—at least in principle—allows for explicitly defining the error 

term of a formatively measured latent variable. However, the nature of this error term 

is ambiguous, as its magnitude partly depends on other constructs embedded in the 

model and their measurement quality (Sarstedt, Hair, Ringle, Thiele, & Gudergan, 

2016).
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8  Advanced Issues in PLS-SEM

The path model in Exhibit 1.3 has one formatively measured construct, Y
1
, which 

PLS-SEM estimates using composite indicators. The corresponding measurement 

model can therefore be expressed as follows:

  Y  
1
   =  w  

1
   ⋅  x  

1
   +  w  

2
   ⋅  x  

2
   +  w  

3
   ⋅  x  

3
   +  z  

1
  , 

in which z
1 
= 0.

Rather than using multiple items to measure a construct, researchers sometimes opt 

for a single-item measurement. PLS-SEM proves valuable in this respect, as the method 

does not encounter identification problems when using less than three items in a measure-

ment model as it is the case with CB-SEM. Single items have practical advantages, such 

as ease of application, brevity, and lower costs associated with their use. Unlike long and 

complicated scales, which sometimes result in a lack of understanding and mental fatigue 

for respondents, single items promote higher response rates since the questions can be 

easily and quickly answered (Fuchs & Diamantopoulos, 2009; Sarstedt & Wilczynski, 

2009). However, single-item measures do not offer more for less. For instance, when par-

titioning the data into groups, researchers have fewer options since scores from only a 

single variable are available to partition the data. Similarly, information is available from 

only a single measure instead of several measures when using imputation methods to deal 

with missing values.

More importantly, from a psychometric perspective, single-item measures do 

not allow for the removal of measurement error (as is the case with multiple items), 

which generally decreases the measure’s reliability. Note that, contrary to commonly 

held beliefs, single-item reliability can be estimated (e.g., Cheah, Sarstedt, Ringle, 

Ramayah, & Ting, 2018; Loo, 2002; Wanous, Reichers, & Hudy, 1997). In addi-

tion, opting for single-item measures in most empirical settings is a risky decision 

when it comes to predictive validity considerations. Specifically, the set of circum-

stances that would favor the use of single-item over multi-item measures is very 

unlikely to be encountered in practice. Finally, social sciences scholars often include 

complex constructs in their theoretical models, such as trust, commitment, coopera-

tion, and satisfaction. Using a single-item measure to represent such complex atti-

tudinal or behavioral concepts can reduce the validity of the construct. According 

to guidelines by Diamantopoulos, Sarstedt, Fuchs, Kaiser, and Wilczynski (2012), 

single-item measures should be considered only in situations when (1) small sample 

sizes are present (i.e., N < 50), (2) path coefficients (i.e., the coefficients linking 

constructs in the structural model) of 0.30 and lower are expected, (3) items of the 

originating multi-item scale are highly homogeneous (i.e., inter-item correlations 

> 0.80, Cronbach’s alpha > 0.90), and (4) the items are semantically redundant. 

Against this background, we generally advise against the use of single items for con-

struct measurement. For further discussions on the efficacy of single-item measures, 

see, for example, Kamakura (2015) and Sarstedt, Diamantopoulos, Salzberger, and 

Baumgartner (2016).
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  9

MODEL ESTIMATION

The Original PLS-SEM Algorithm

With an adequate sample (see Hair, Hult, Ringle, & Sarstedt, 2022, Chapter 1, for 

further details), which meets the minum sample size, researchers can use the PLS-

SEM method for the model estimation (see also Ringle, Sarstedt, Sinkovics, & 

Sinkovics, 2023). Model estimation in PLS-SEM draws on a three-stage approach 

that belongs to the family of (alternating) least squares algorithms (Mateos-

Aparicio, 2011). Exhibit 1.4 illustrates the PLS-SEM algorithm as presented by 

Lohmöller (1989, Chapter 2). Henseler et al. (2012) offer a graphical illustration of 

its stages. The algorithm starts with an initialization stage in which it establishes 

preliminary construct scores. To compute these scores, the algorithm typically 

uses unit weights (i.e., 1) for all indicators in the measurement models (Hair et al., 

2022).

Stage 1 of the PLS-SEM algorithm iteratively determines the inner weights (i.e., 

the path coefficients) and construct scores employing a four-step procedure. Step #1 

uses the initial construct scores from the initialization of the algorithm to determine 

Initialization

Stage 1: Iterative estimation of weights and construct scores

Starting at Step #4, repeat Steps #1 to #4 until convergence is obtained.

#1 Inner weights (here obtained by using the factor weighting scheme)

  b  
ji
   =  { 

cov ( Y  
j
  ;  Y  

i
  )  

  
0 

     
if  Y  

j
   and  Y  

i
   are adjacent

   
0 else

   

#2 Inside approximation

    ̃  Y    
j
   : =  ∑ 

i
    b  

ji
    Y  

i
    

#3 Outer weights; solve for

    ̃  Y    
jn
   =  ∑ 

 k  
j
  
      ̃  w    

 k  
j
  
    x  

 k  
j
  n
   +  d  

jn
    in a Mode A block  

  x  
 k  

j
  n
   =    ̃  w    

 k  
j
  
      ̃  Y    

jn
   +  e  

 k  
j
  n
   in a Mode B block 

#4 Outside approximation

  Y  
jn
   := ∑ 

    
 k  

j
  
  
      ̃  w    

 k  
j
  
    x  

 k  
j
  n
    

Stage 2: Estimation of outer weights, outer loadings, and path coefficients

Stage 3: Estimation of location parameters

EXHIBIT 1.4 ■    The Basic PLS-SEM Algorithm (adapted from Lohmöller 

1989, p. 29)
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10  Advanced Issues in PLS-SEM

the inner weights b
ji
 between the adjacent constructs Y

j
 (i.e., the dependent one) 

and Y
i
 (i.e., the independent one) in the structural model. Please note that we use 

an extended nomenclature compared to our discussion of model specification. For 

example, the inner weights b
ji
, which are used as provisional estimates of the path 

coefficients, have two indices, i and j, representing the independent construct and 

dependent construct of the corresponding relationship. The literature suggests dif-

ferent approaches to determining the inner weights (Chin, 1998; Lohmöller, 1989; 

Tenenhaus, Esposito Vinzi, Chatelin, & Lauro, 2005). In the factor weighting 

scheme, the inner weight corresponds to the covariance between Y
j
 and Y

i
 and is set 

to 0 if the constructs are unconnected. The path weighting scheme considers the 

direction of the inner model relationships (Lohmöller, 1989, Chapter 2). Chin (1998, 

p. 309) notes that the path weighting scheme “attempts to produce a component that 

can both ideally be predicted (as a predictand) and at the same time be a good pre-

dictor for subsequent dependent variables.” As a result, the path weighting scheme 

leads to slightly higher R² values in the endogenous constructs compared to the other 

schemes and should therefore be preferred. In most instances, however, the choice of 

the inner weighting scheme has very little bearing on the results (Lohmöller, 1989, 

Chapter 2; Noonan & Wold, 1982).

Step #2, the inside approximation, computes proxies for all constructs     ̃  Y    
j
    by using the 

weighted sum of its adjacent constructs’ scores Y
i
. Then, for all the indicators in the mea-

surement models, Step #3 computes new outer weights, which indicate the strength of the 

relationship between each construct     ̃  Y    
j
    and its corresponding indicators. To do so, the PLS-

SEM algorithm uses two different estimation modes (Exhibit 1.4). When using Mode A 

(i.e., correlation weights), the bivariate correlation between each indicator and the con-

struct determines the outer weights. In contrast, Mode B (i.e., regression weights) computes 

indicator weights by regressing each construct on its associated indicators.

By default, estimation of reflectively specified constructs draws on Mode A, 

whereas PLS-SEM uses Mode B for formatively specified constructs. However, Cho 

et al. (2023) show that this reflex-like use of Mode A and Mode B is not optimal when 

using PLS-SEM for prediction purposes. Their simulation study indicates that Mode 

A provides higher degrees of out-of-sample predictive power in situations commonly 

encountered in empirical research (see also Becker, Rai, & Rigdon, 2013). Exhibit 1.4 

shows the formal representation of these two modes, where   x  
 k  

j
  n
    represents the raw data 

for indicator k (k = 1, …, K ) of construct j ( j = 1, …, J) and observation n (n = 1, 

…, N);     ̃  Y    
jn
    are the construct scores from the inside approximation in Step #2,     ̃  w    

 k  
j
  
    are 

the outer weights from Step #3, d
jn
 is the error term from a bivariate regression, and   

e  
 k  

j
  n
     is the error term from a multiple regression. The updated weights from Step #3 

(i.e.,     ̃  w    
 k  

j
  
    ) and the indicators (i.e.,   x  

 k  
j
  n
   ) are linearly combined to update the constructs 

scores (i.e.,   Y  
jn
    ) in Step #4 (outside approximation). Note that the PLS-SEM algorithm 
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  11

uses standardized data as input and always standardizes the generated construct scores 

in Step #2 and Step #4. After Step #4, a new iteration starts. The algorithm terminates 

when the weights obtained from Step #3 change marginally from one iteration to the 

next (typically 1·10-7), or when the maximum number of iterations is achieved (typi-

cally 300).

Stages 2 and 3 use the final construct scores from Stage 1 as input for a series of 

ordinary least squares regressions. These regressions compute the final outer loadings, 

outer weights, and path coefficients as well as related elements such as indirect, and 

total effects, R² values of the endogenous constructs, and the indicator and construct 

correlations (Lohmöller, 1989, Chapter 2).

The Weighted PLS-SEM Algorithm

An extension of the PLS-SEM approach is the weighted PLS-SEM (WPLS) algo-

rithm (Becker & Ismail, 2016). This modified version of the original PLS-SEM algo-

rithm enables researchers to match sample and population structure (Cheah, Roldán, 

Ciavolino, Ting, and Ramayah, 2021).

When estimating a PLS path model, researchers typically seek to draw inferences 

about the population of interest. An important requirement for such inferences is that 

the sample is representative of the population. Probability sampling methods, such as 

simple random sampling or cluster sampling, meet this requirement as every member 

of a population has an equal probability of being selected in the sample (Sarstedt & 

Mooi, 2019, Chapter 4). In the probability sampling case, every observation in the 

sample would have the same weight in the PLS-SEM analysis. In practice, however, 

population members are often not equally likely to be included in the sample, for 

example, because of the use of non-probability sampling methods, such as quota sam-

pling, which is the norm for social sciences research. To adjust for resulting biases, 

researchers may use sampling weights (also referred to as post-stratification weights) 

that assign the observations different relevance in the parameter estimation process 

(Sarstedt, Bengart, Shaltoni, & Lehmann, 2018). For example, if a population consists 

of an equal share of males and females but the sample comprises 60% males and 40% 

females, sampling weights ensure that females are weighted more strongly than males 

in the parameter estimation.

Different from the original PLS-SEM algorithm, the WPLS algorithm considers 

sampling weights v
n
 in the calculation of the mean, the variance, and covariance (corre-

lation) of the construct scores in each iteration. For example, indicator standardization 

should rely on the weighted mean   ̂    
_
 x     and weighted variance    ̂  var (x)    , defined as follows:

   

 ̂    
_
 x   

  

=

  

  
 ∑  

n=1
  N      v  

n
    x  

n
  
 _ 

 ∑  
n=1

  N      v  
n
  
  

   

  ̂  var (x)   

  

=

  

  
 ∑  

n=1
  N      v  

n
     ( x  

n
   −  ̂    

_
 x   )    2 
  ______________ 

 ( ∑  
n=0

  N      v  
n
  ) 
  ,
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12  Advanced Issues in PLS-SEM

whereby the hat symbolizes that these are weighted results. Similarly, the correla- 

tion weights used in Mode A draw on the weighted covariances, while the regression 

weights in Mode B and the inner model weights should use the weighted standardized 

data as input. For example, the inner model weights are given by:

  b  
ji
   = co  r  

v
     ( Y  

i
  )    −1  co  r  

v
   ( Y  

i
  ,    ̃  Y    

j
  ) . 

The effect of these corrections is that all the calculations during the iterative 

PLS-SEM algorithm (e.g., path coefficient estimates) are weighted with the sampling 

weights while retaining all information from the original data set in the model. As a 

result, WPLS provides more accurate average population model parameter estimates 

than the basic PLS-SEM algorithm when appropriate sampling weights are available. 

Becker and Ismail (2016) and Cheah, Roldán, Ciavolino, Ting, and Ramayah (2021) 

provide more details on WPLS.

Consistent PLS-SEM

The consistent PLS-SEM (PLSc-SEM) algorithm performs a correction of reflective 

constructs’ correlations to make the results consistent with a common factor model 

(Dijkstra 2010, 2014; Dijkstra & Henseler 2015; Dijkstra & Schermelleh-Engel 

2014). In principle, the correction builds on Nunnally’s (1978) well-known cor-

rection for attenuation formula. As such, PLSc-SEM follows a composite modeling 

logic and modifies the PLS-SEM results to mimic a common factor model (Sarstedt, 

Hair, Ringle, Thiele, & Gudergan, 2016) and, thus, the results generated by CB-SEM 

(Jöreskog, 1978; Jöreskog & Wold, 1982).

Specifically, PLSc-SEM’s objective is to compute the disattenuated (i.e., consis-

tent) correlation   r  
 Y  

1
  , Y  

2
  
  c    between two constructs Y

1 
and Y

2
, which is the modified version 

of their original correlation (  r  
 Y  

1
  , Y  

2
  
   ), corrected for measurement error. To do so, PLSc-

SEM divides the original construct correlation   r  
 Y  

1
  , Y  

2
  
    by the geometric mean of the con-

structs’ reliabilities, measured using the reliability coefficient ρ
A
.

PLSc-SEM follows a four-step approach (Exhibit 1.5). In Step 1, the traditional 

PLS-SEM algorithm is run. These results are then used in Step 2 to calculate the 

reliability ρ
A
 of all ref lectively measured constructs in the PLS path model (Dijkstra, 

2014; Dijkstra & Henseler, 2015b). For formatively measured constructs and single-

item constructs, ρ
A
 is set to 1. In Step 3, the consistent reliabilities of all constructs 

from Step 2 are used to correct the inconsistent correlation matrix of the constructs 

1 2 3 4

Traditional

PLS

Calculate

�
A

Correction for

attenuation

Estimation

of path

coefficients

EXHIBIT 1.5 ■    The Four-Step PLSc-SEM Procedure
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  13

obtained in Step 1. More precisely, researchers obtain the consistent correlation 

between two constructs by dividing their correlation from Step 1 by the geomet-

ric mean (i.e., the square root of the product) of their reliabilities ρ
A
. This correc-

tion applies to all correlations of ref lectively measured constructs. The correlation 

of two formative and/or single-item constructs remains unchanged. The correction 

for attenuation only applies when at least one reflectively measured construct with 

a consistent reliability ρ
A
 smaller than 1 is involved in the correlation between two 

constructs in the PLS path model. In Step 4, the consistent correlation matrix of the 

constructs allows re-estimating all model relationships yielding consistent path coef-

ficients, corresponding R² values, and outer loadings. Note that significance testing 

in PLSc-SEM requires running an adjusted bootstrapping routine, which has also 

been implemented in extant PLS-SEM software.

In practical applications, PLSc-SEM results can be substantially influenced by low 

reliability levels of the constructs. As a result, the standardized path coefficients pro-

duced by PLSc-SEM can become very high (in some situations considerably larger than 

1). Moreover, in more complex PLS path models, collinearity among the constructs has 

a strong negative impact on the PLSc-SEM results. In some instances, the structural 

model relationships become very small. Finally, bootstrapping of PLSc-SEM results 

frequently produces inadmissible solutions or can yield extreme outcomes, which 

result in high standard errors in certain relationships, increasing the Type II error rate.

In light of these limitations, the question arises as to when researchers should use 

PLSc-SEM. The PLSc-SEM approach is appropriate when researchers assume the data 

are obtained from a common factor model (Bollen, 2011; Bollen & Bauldry, 2011); we 

will discuss this model type in detail in the following section. In that case, the objective 

is to mimic CB-SEM results by assuming the construct can be adequately represented 

by the common variance of its indicators. Simulation studies for such models reveal that 

CB-SEM and PLSc-SEM return almost identical results of the estimated coefficients 

(Dijkstra & Henseler, 2015b). While CB-SEM and PLSc-SEM have approximately 

the same accuracy of estimated parameters and statistical power, PLSc-SEM retains 

most of PLS-SEM’s advantageous features. Among others, PLSc-SEM does not rely on 

distributional assumptions, can handle complex models, is less affected by incorrect 

specifications in subparts of the model, and will not encounter convergence problems. 

At the same time, however, the correction for attenuation in Step 3 changes the path 

coefficient estimates, which have been derived from the original PLS-SEM estimation 

and maximize the endogenous constructs’ explained variance. As a consequence, any 

assessment of the model’s predictive power using the modified path coefficient esti-

mates is inconsistent with the original PLS-SEM estimation. Considering that research 

has emphasized the causal-predictive nature as an integral part of PLS-SEM and a key 

distinguishing feature from CB-SEM, this limitation is highly problematic. In addi-

tion, Sarstedt, Hair, Ringle, Thiele, and Gudergan (2016) show that the bias produced 

by PLSc-SEM is considerably higher than the one produced by CB-SEM when errone-

ously using the method on data that stem from a composite model population.
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14  Advanced Issues in PLS-SEM

In light of these limitations, Hair, Sarstedt, and Ringle (2019, p. 567) conclude 

that PLSc-SEM “adds very little to existing knowledge of SEM” and that researchers 

should revert to the widely recognized and accepted CB-SEM approach when estimat-

ing common factor models. Nevertheless, PLSc-SEM is an alternative to the standard 

CB-SEM estimation when attempting to estimate under-identified models or when 

convergence problems occur. The same limitations apply to Bentler & Huang’s (2014) 

PLSe2 method, which builds on the PLSc-SEM results but applies a generalized least 

squares covariance structure estimation on the modified correlation matrix, and Yuan, 

Wen, & Tang’s (2020) Cronbach’s α based approach. As such, the method does not 

unite the advantages of PLS-SEM and CB-SEM as suggested by some researchers 

(Ghasemy, Jamil, & Gaskin, 2021).

PRINCIPLES OF PLS-SEM

Several considerations are important when applying PLS-SEM, which have their 

roots in the method’s characteristics. While PLS-SEM is a distinct statistical method 

(Schuberth, Zaza, & Henseler, 2023), some of its characteristics need to be explained 

by contrasting it to the CB-SEM method, which has long dominated social sciences 

research (Babin, Hair, & Boles, 2008). We first discuss the measurement philosophy 

underlying PLS-SEM, followed by aspects related to the way the method estimates 

model parameters and ensuing biases. We then summarize the implications regarding 

the recommended situations for the application of each method based on strengths and 

limitations.

Philosophy of Measurement

A crucial conceptual difference between PLS-SEM and CB-SEM relates to the way each 

method calculates the scores of all constructs included in a model. CB-SEM represents 

a common factor-based SEM method that considers the constructs as common factors 

that explain the covariances between all indicators included in the theoretical model. The 

underlying assumption is that the covariances (or common variance) of a set of indicators 

can in principle, be perfectly explained by the existence of one unobserved variable (the 

common factor) and an individual random error (Spearman, 1927; Thurstone, 1947). The 

common factor model approach is consistent with the measurement philosophy underly-

ing reflective measurement in which the indicators and their covariations are regarded as 

manifestations of the underlying construct. To estimate the model parameters, CB-SEM 

minimizes the divergence between the empirical (observed) covariance matrix and the 

covariance matrix implied (estimated) by the model given a certain set of parameter esti-

mates (Hair, Black, Babin, & Anderson, 2019).

In contrast, PLS-SEM runs partial regressions to obtain construct scores that min-

imize the residuals (error variances) in the relationships between composites and indi-

cators (i.e., in the measurement models) as well as those between composites (i.e., in 
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  15

the structural model)—see Tenenhaus, Esposito Vinzi, Chatelin, and Lauro (2005). In 

doing so, PLS-SEM linearly combines the indicators of each construct’s measurement 

model to form composite variables. PLS is therefore considered a composite-based 

SEM method (Hwang, Sarstedt, Cheah, & Ringle, 2020). In estimating the compos-

ite scores, the PLS-SEM algorithm weights each indicator individually. The indicator 

weights reflect each indicator’s importance in forming the composite. That is, indica-

tors with a larger weight contribute more strongly to forming it. In addition, unlike 

CB-SEM, in which model solutions are based only on common variance, PLS-SEM 

solutions are derived from total variance, which consists of both common and unique 

variance.

Moreover, PLS-SEM composite scores are superior to sum scores, which unit-

weight each item with a coefficient of 1 (or any other arbitrary value so long as it is 

constant) for representing constructs (McNeish & Wolf, 2020). For example, with 

reflective measurement models, the PLS-SEM weights are also indicative of each indi-

cator’s degree of measurement error. Indicators with high degrees of measurement 

error have smaller weights, thereby contributing less to forming the composite variable 

(Hair, Hult, Ringle, & Sarstedt, 2021). The process of applying weighted composites 

of indicator variables makes PLS-SEM superior to multiple regression and other sta-

tistical models using sum scores. If multiple regression with sum scores is used, the 

researcher assumes an equal weighting of all construct indicators, which means each 

indicator contributes equally to forming the composite, thereby not considering mea-

surement error in calculating the construct scores (Hair & Sarstedt, 2019; Henseler 

et al., 2014). As a result, the use of sum scores produces higher parameter bias when 

the indicator weights differ, as is typically the case in applied research. Moreover, sum 

scores SEM approaches produce lower statistical power compared to differential indi-

cator weights produced by PLS-SEM (Hair, Hult, Ringle, Sarstedt, & Thiele, 2017). 

McNeish and Wolf (2020) summarize the empirical and conceptual shortcomings 

of sum scores estimation, noting equal weights (1) generate unrealistic expectations 

about the population (data-generating) model by enforcing unnatural constraints on 

the empirical model; (2) hinder rigorous and accurate psychometric assessments by 

ignoring measurement theory in its entirety; (3) adversely affect construct validity and 

reliability; and (4) often result in vastly different conclusions due to inaccurate coef-

ficient estimation. In addition, because virtually all the psychometric scales used in 

business research have been validated under the assumption of differentiated weights, 

using equal weights when applying these scales is categorically inappropriate because 

doing so imposes a different model from the initial validated one.

Parameter Estimation Accuracy

The philosophy of measurement assumed by PLS-SEM has important implications for any 

statement regarding its parameter accuracy (i.e., the degree to which the method produces 

accurate results). At the beginning of the method’s development and use, researchers noted 
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16  Advanced Issues in PLS-SEM

that PLS estimation is “deliberately approximate” (Hui & Wold 1982, p. 127) to common 

factor-based SEM, a characteristic that has come to be incorrectly known as the PLS-SEM 

bias (e.g., Marcoulides, Chin, & Saudners, 2012). Several studies have used simulations 

to demonstrate the alleged PLS-SEM bias (e.g., Goodhue, Lewis, & Thompson, 2012; 

McDonald, 1996; Rönkkö & Evermann, 2013), which supposedly manifests itself in mea-

surement model estimates that are higher and structural model estimates that are lower 

compared to the prespecified values. The studies conclude that parameter estimates will 

approach what has been labeled the “true” parameter values when both the number of indi-

cators per construct and sample size increase (Hui & Wold, 1982). All these simulation 

studies used CB-SEM as the benchmark against which the PLS-SEM estimates were evalu-

ated based on the assumption that the results should be the same. However, such assess-

ments can be expected to include bias since PLS-SEM is a composite-based approach that 

uses the total variance to estimate parameters (e.g., Schlittgen, Sarstedt, & Ringle, 2020; 

Schneeweiß, 1991; Tenenhaus, Esposito Vinzi, Chatelin, & Lauro, 2005). Not surprisingly, 

the very same issues apply when composite models are used to estimate CB-SEM results. 

In fact, Sarstedt, Hair, Ringle, Thiele, and Gudergan (2016) show that the biases produced 

by the CB-SEM methods are far more severe than those of PLS-SEM, when applying the 

method to the wrong type of model (i.e., estimating composite models with CB-SEM vs. 

estimating common factor models with PLS-SEM). Cho, Sarstedt, and Hwang (2022) 

recently confirmed these findings in a more complex simulation design and conceptually 

compared common factor and composite models, clarifying their similarities and differ-

ences. When acknowledging the different nature of the construct measures, most of the 

arguments voiced by critics of the PLS-SEM method (Rönkkö, McIntosh, Antonakis, & 

Edwards, 2016) are no longer an issue (Cook & Forzani, 2020; Cook & Forzani, 2023). 

Yuan and Fang (2022) raise additional conceptual concerns regarding the assumed PLS-

SEM bias. They note that the parameter values in a CB-SEM analysis depend on the 

researcher’s way of fixing the scale (e.g., fixing an indicator loading to unity)—a neces-

sary step in any CB-SEM analysis. As a consequence, “the population values of the model 

parameters under [CB-]SEM are artificial,” which implies that any resulting bias “does not 

enjoy a clear substantive interpretation.” Cook and Foranzi (2023) recently echoed this 

notion.

Apart from these conceptual concerns, simulation studies show the differences 

between PLS-SEM and CB-SEM estimates when assuming the latter as a standard 

of comparison are very small, provided the measurement models meet minimum 

recommended standards in terms of measurement quality (i.e., reliability and valid-

ity). Specifically, when the measurement models have four or more indicators and the 

indicator loadings meet the common standards (≥ 0.708), there are practically no 

differences between the two methods in terms of parameter accuracy (e.g., Reinartz, 

Haenlein, & Henseler, 2009; Sarstedt, Hair, Ringle, Thiele, & Gudergan, 2016). 

Thus, the extensively discussed and supposed PLS-SEM bias is of no practical rel-

evance for almost all SEM applications (e.g., Binz-Astrachan, Patel, & Wanzenried, 

2014; Sharma, Liengaard, Sarstedt, Hair, & Ringle, 2023).
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  17

A more fundamental question is, however, whether it is reasonable to view common 

factor models as the universal measurement benchmark. Research casts considerable 

doubt on this premise, as common factors derived in CB-SEM are also not necessar-

ily equivalent to the theoretical concepts that are the focus of research (Rigdon, 2012; 

Rigdon, Sarstedt, & Ringle, 2017; Rossiter, 2011; Sarstedt, Hair, Ringle, Thiele, & 

Gudergan, 2016). The reason for concern regarding the use of CB-SEM measurement 

and structural model results as a benchmark is that measurement in CB-SEM defines 

validity purely on the grounds of the relationships between the constructs and their indi-

cators as measured by common variance only. For example, strong loadings in a mea-

surement model suggest the construct converges into its indicators, offering evidence 

for convergent validity. However, constructs merely serve as representations or proxies 

of conceptual variables in a statistical model (Rigdon & Sarstedt, 2022; Sarstedt, Hair, 

Ringle, Thiele, & Gudergan, 2016). The actual entities of interest are the conceptual 

variables, which represent broad ideas or thoughts about abstract concepts that research-

ers establish and propose to measure in their research (e.g., Bollen, 2002). The relation-

ships between the constructs and the conceptual variables, however, remain unknown 

since measurement error, as defined in SEM, only relates to the relationships between 

indicators and common factors or composites (Hair & Sarstedt, 2019). Exhibit 1.6 illus-

trates the relationships between conceptual variables, constructs, and indicators.

Even when considering perfect model fit, it is unreasonable to assume the con-

structs are equivalent to the conceptual variables they seek to represent (Cliff, 1983; 

MacCallum & Browne, 2007; Michell, 2013). The reason is any measurement includes 

metrological uncertainty, which refers to the dispersion of the measurement values 

attributed to the object or concept being measured (JCGM/WG1, 2008). Numerous 

sources contribute to metrological uncertainty, such as definitional uncertainty or lim-

itations related to the measurement scale design, which go well beyond the simple stan-

dard errors produced by CB-SEM analyses (Hair & Sarstedt, 2019; Rigdon, Sarstedt, & 

Becker, 2020). One contributing factor to uncertainty is factor (score) indeterminacy, 

which means an infinite number of different sets of construct scores that will fit the 

model equally well are possible (Guttman, 1955; Schönemann & Wang, 1972). Factor 

indeterminacy produces a band of uncertainty in the relationship (i.e., the correlation) 

between a common factor inside the model and any variable outside the model (Steiger, 

1979). Since the conceptual variable itself is not part of the model (i.e., it is outside the 

model), this range of correlation values applies as well to the relationship between an 

indeterminant common factor and the conceptual variable it is designed to represent 

(Exhibit 1.6). For example, the presence of factor indeterminacy implies the correla-

tion between the common factor in the statistical model labeled, for example, customer 

satisfaction and the actual customer satisfaction is uncertain—even when the model 

shows a perfect fit (Rigdon & Sarstedt, 2022). To better grasp this concept, consider 

a model with four moderately correlated (0.3) common factors, each measured with 

three indicators and all with 0.7 loadings. In such a setting, the correlation between a 

common factor (e.g., the construct labeled customer satisfaction) and the corresponding 
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18  Advanced Issues in PLS-SEM

conceptual variable (e.g., the actual customer satisfaction) lies in a range that has a width 

of 0.495 (Rigdon, Becker, & Sarstedt 2019). This means the range of uncertainty cov-

ers 0.495/2 = 24.75% of the total possible range of correlation (see Table 2 in Rigdon, 

Becker, & Sarstedt, 2019). Researchers’ common practice of restricting the number of 

indicators per construct to improve model fit in CB-SEM analyses further increases 

this uncertainty (Hair, Matthews, Matthews, & Sarstedt, 2017; Rigdon, Becker, & 

Sarstedt, 2019).

While these issues do not necessarily imply that PLS-SEM is superior (Rigdon & 

Sarstedt, 2022), they cast considerable doubt on the assumption of some researchers 

that CB-SEM constitutes the gold standard when measuring unobservable concepts 

(e.g., Rhemtulla, van Bork, & Borsboom, 2020; Rigdon, 2016). Instead, research-

ers should recognize that all constructs are merely approximations of or proxies for 

conceptual variables (Exhibit 1.6), independent from how they were estimated (e.g., 

Rigdon, Sarstedt, & Ringle, 2017; Wickens, 1972). That is, constructs should be 

viewed as “something created from the empirical data which is intended to enable 

empirical testing of propositions regarding the concept” (Rigdon 2012, pp. 343–344). 

Hence, irrespective of the quality with which a conceptual variable is theoretically 

substantiated and operationally defined, and the rigor that encompasses measure-

ment model development, any measurement in structural equation models produces 

only proxies for conceptual variables (Rigdon, 2012). This assessment is in line with 

the proliferation of all sorts of instruments that claim to measure essentially the same 

concept, although often with little chance to convert one instrument’s measures into 

any other instrument’s measures (Salzberger, Sarstedt, & Diamantopoulos, 2016). For 

Construct

(composite or common factor)

Conceptual variable

Indicators

Measurement

error

EXHIBIT 1.6 ■    Error Framework for Conceptual Variables, Proxies, and 

Indicators
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  19

example, research and practice have proposed a multitude of measurement instruments 

for corporate reputation, which rest on the same definition of the concept but differ 

fundamentally in terms of their underlying conceptualizations and measurement items 

(Sarstedt, Wilczynski, & Melewar, 2013). Similarly, Bergkvist and Langner (2017, 

2019) find considerable heterogeneity in the operationalizations of common advertis-

ing constructs, such as attitude toward the ad, attitude toward the brand, ad credibility, 

ad irritation, and brand purchase intention. In addition, construct conceptualizations 

and operationalizations change over time (Bergkvist & Eisend, 2021), while the theo-

retical entity of interest (i.e., the conceptual variable) generally remains the same. These 

findings suggest there is no set way to perfectly measure a concept (Viswanathan, 

2022). Nevertheless, much progress has been made in more accurately measuring con-

cepts, particularly in consideration of multi-item versus single-item measures, and the 

addition of improved quantitative metrics for assessing both reliability and validity.

Model Estimation Implications

An important characteristic of PLS-SEM is that the method does not simultaneously 

compute all the model relationships, but instead uses separate ordinary least squares 

regressions to estimate the model’s partial regression relationships (Exhibit 1.4)—

as implied by its name. As a result, the overall number of model parameters can be 

extremely high in relation to the sample size as long as each partial regression rela-

tionship draws on a sufficient number of observations (Chin & Newsted, 1999). For 

example, Antioco, Moenaert, Feinberg, and Wetzels (2008) estimate a PLS path model 

comprising 18 constructs and 33 structural model relationships with merely 121 obser-

vations. Needless to say, such an approach is unlikely to be reasonable from a sam-

pling theory perspective unless the population of interest is highly homogeneous. Yet, 

it offers sufficient statistical power.

Upon convergence, the PLS-SEM algorithm produces a single specific (i.e., deter-

minate) score for each observation per construct. Using these scores as input, PLS-

SEM applies ordinary least squares regression with the objective of maximizing the 

explained variance values of the endogenous constructs and their indicators. That is, 

the method seeks to maximize explanatory power, also referred to as in-sample predic-

tive power, which refers to the model’s ability to reproduce the data that has been used 

to estimate the model parameters. Yuan and Fang (2022) have shown, numerically and 

by a simulation study, that PLS-SEM yields higher levels of explanatory power than 

CB-SEM. That is, when the aim is to maximize explanatory power, researchers should 

prefer PLS-SEM over CB-SEM.

The PLS-SEM results also enable assessment of the model’s out-of-sample predictive 

power (or simply predictive power), which indicates a model’s ability to predict new or 

future observations. As high explanatory power (R2) does not guarantee significant pre-

dictive power (Inoue & Kilian, 2005; Sarstedt & Danks, 2022; Shmueli, 2010), research-

ers need to explicitly test this aspect of their model’s performance using holdout samples 
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20  Advanced Issues in PLS-SEM

(Cepeda-Carrión, Henseler, Ringle, & Roldán, 2016), k-fold cross-validation (Shmueli, 

Ray, Velasquez Estrada, & Chatla, 2016; Shmueli et al., 2019) or a stand-alone predictive 

ability test (Sharma, Liengaard, Hair, Sarstedt, & Ringle, 2023). These characteristics 

define PLS-SEM’s causal-predictive paradigm in which the aim is to assess the predic-

tive power of a specified model carefully developed on the grounds of theory or logic. 

The underlying causal-predictive logic follows what Gregor (2006) refers to as explain-

ing and predicting (EP) theories. EP theories imply an understanding of the underlying 

causes and prediction as well as a description of theoretical constructs and their relation-

ships. According to Gregor (2006, p. 626), this type of theory “corresponds to commonly 

held views of theory in both the natural and social sciences.” Numerous seminal theories 

and models, such as Oliver’s (1980) expectation-disconfirmation theory or the various 

technology acceptance models (e.g., Venkatesh, Morris, Davis, & Davis, 2003) follow an 

EP-theoretic approach in that their aim is to explain and predict. PLS-SEM is perfectly 

suited to investigate models derived from EP theories as the method strikes a balance 

between machine learning methods, which are fully predictive in nature, and CB-SEM, 

which focuses on confirmation and model fit (Richter, Cepeda Carrión, Roldán, & 

Ringle, 2016). Its causal-predictive nature makes PLS-SEM particularly appealing for 

research in fields that aim to derive recommendations for practice (Chin et al., 2020; 

Sarstedt & Danks, 2022). For example, recommendations in managerial implications 

sections that are an element of many business research journals always include predic-

tive statements (“our results suggest that managers should…”). Making such statements 

requires a prediction focus in model estimation and evaluation. PLS-SEM perfectly 

emphasizes this need as the method sheds light on the mechanisms (i.e., the structural 

model relationships) through which the predictions are generated (Hair, 2021; Hair & 

Sarstedt, 2021; Legate, Hair, Lambert, & Risher, 2021).

ORGANIZATION OF THE REMAINING CHAPTERS

The remaining chapters provide more detailed information on advanced analyses using 

PLS-SEM, including specific examples of how to use the SmartPLS 4 software. In this 

book on advanced PLS-SEM issues, we build upon Stage 7 of the systematic procedure 

for applying PLS-SEM (Exhibit 1.7) from the Primer on Partial Least Squares Structural 

Equation Modeling (PLS-SEM) (Hair, Hult, Ringle, & Sarstedt, 2022), which enjoys 

an extremely high level of popularity (Ringle, 2019). The advanced PLS-SEM analyses 

will enable you to better understand and explain your results, and provide the types of 

analyses and diagnostic metrics editors and reviewers increasingly request. Exhibit 1.8 

displays the chapters and topics covered in this book.

Chapter 2 introduces higher-order constructs, which allow measuring a concep-

tual variable on different levels of abstraction. For this purpose, a higher-order con-

struct simultaneously models several subcomponents that cover more concrete traits 

of the conceptual variable represented by this construct. With the growing complexity 
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  21

of theories and cause-effect models in the social sciences, researchers have increasingly 

used these models in their PLS-SEM studies (e.g., Sarstedt, et al., 2022).

Chapter 3 starts with an introduction to nonlinear relationships, which have 

gained increasing prominence in applications of PLS-SEM (Basco, Hair, Ringle, & 

Sarstedt, 2021). When the relationship between two constructs is nonlinear, the size 

of the effect between them depends not only on the magnitude of change in the 

exogenous construct but also on its value. We introduce the principles of nonlinear 

modeling and describe how to run corresponding analyses in SmartPLS 4. The sec-

ond part of the chapter introduces confirmatory tetrad analysis (CTA-PLS), which 

facilitates empirically assessing whether the data support a formative or a ref lective 

measurement model specification. In light of the potential biases that result from 

misspecifying measurement models, the CTA-PLS offers a valuable means to safe-

guard the results’ validity.

Chapter 4 introduces two techniques that extend standard PLS-SEM results 

assessment procedures. We first introduce the necessary condition analysis (NCA) that 

Specifying the structural model

Specifying the measurement models

Collecting and examining the data

PLS path model estimation

Assessing PLS-SEM results of the

reflective measurement models

Assessing PLS-SEM results of the

formative measurement models

Assessing PLS-SEM results

of the structural model

Advanced PLS-SEM analyses

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5a

Stage 5b

Stage 6

Stage 7

Interpretation of results and drawing conclusionsStage 8

EXHIBIT 1.7 ■    A Systematic Procedure for Applying PLS-SEM
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22  Advanced Issues in PLS-SEM

takes a different perspective on the model relationships by testing the degree to which 

an outcome—or a certain level of an outcome—depends on the values of other con-

structs or indicators in the model. By assuming such necessity relationships, the NCA 

complements the sufficiency logic that standard PLS-SEM analyses rely on. In the sec-

ond part of this chapter, we present the importance performance map analysis (IPMA). 

The IPMA contrasts the structural model relationships, which represent a construct’s 

or an indicator’s “importance” for a target construct with the average construct scores, 

which represent their “performance” in the PLS path model.

The following two chapters deal with different concepts that enable researchers 

to model heterogeneous data. Chapter 5 provides an overview of observed and unob-

served heterogeneity, showing how disregarding heterogeneous data structures can 

generate biased results. Next, we discuss measurement invariance, which is a primary 

concern before comparing groups of sample data. The chapter concludes with an intro-

duction of different types of multigroup analysis that are used to compare parameters 

(usually path coefficients) between two or more groups of data. While these methods 

enable researchers to account for observed heterogeneity, more often than not, situa-

tions arise in which differences related to unobserved heterogeneity prevent the deriva-

tion of accurate results as the analysis on the aggregate data level masks group-specific 

effects. Chapter 6 introduces two additional methods, finite mixture PLS (FIMIX-

PLS) and prediction-oriented segmentation in PLS (PLS-POS) that enable researchers 

to identify and treat unobserved heterogeneity in PLS path models.

Chapter Topics

2 Higher-Order Constructs

3 Advanced Modeling and Model Assessment

 – Nonlinear Relationships

 – Confirmatory Tetrad Analysis (CTA-PLS)

4 Advanced Results Illustration

 – Necessary Condition Analysis (NCA)

 – Importance-Performance Map Analysis (IPMA)

5 Modeling Observed Heterogeneity

 – Measurement Invariance Assessment (MICOM)

 – Multigroup Analysis

6 Modeling Unobserved Heterogeneity

 – Finite Mixture PLS (FIMIX-PLS)

 – PLS Prediction-Oriented Segmentation (PLS-POS)

EXHIBIT 1.8 ■    Thematical Vverview of this Book
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  23

CASE STUDY ILLUSTRATION

Corporate Reputation Model

The most effective way to learn how to use a statistical method is to apply it to a set of 

data. Throughout this book, we use a single example that enables us to do that. The 

example is drawn from a series of published studies on corporate reputation, which is 

general enough to be understood by researchers from various disciplines, thus further 

facilitating comprehension of the analyses presented in this book. More precisely, we 

draw on the corporate reputation model by Eberl (2010), which Hair, Hult, Ringle, 

and Sarstedt (2022) use in their Primer on Partial Least Squares Structural Equation 

Modeling (PLS-SEM). The model’s purpose is to explain the effects of corporate reputa-

tion—a company’s overall evaluation by its stakeholders (Helm, Eggert, & Garnefeld, 

2010)—on customer satisfaction (CUSA) and, ultimately, customer loyalty (CUSL). 

Following Schwaiger (2004), corporate reputation is measured using two dimensions. 

One dimension represents the cognitive evaluations of the company and measures the 

construct describing the company’s competence (COMP). The second dimension cap-

tures affective judgments and assesses perceptions of the company’s likeability (LIKE). 

These two constructs are hypothesized to explain variations in customer satisfaction 

and loyalty (Schwaiger, Witmaier, Morath, & Hufnagel, 2021). Schwaiger (2004) fur-

ther identifies four antecedent dimensions of reputation: quality (QUAL), performance 

(PERF), attractiveness (ATTR), and corporate social responsibility (CSOR). Exhibit 

1.9 shows the corporate reputation model.

The measurement models of the LIKE, COMP, and CUSL constructs have three 

reflective indicators, whereas CUSA is measured with a single item. In general, we 

CUSLCUSA

COMP

LIKE

QUAL

PERF

CSOR

ATTR

EXHIBIT 1.9 ■    Structural Model of Corporate Reputation
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24  Advanced Issues in PLS-SEM

recommend that using single items should be avoided, particularly in PLS-SEM analy-

ses (e.g., Diamantopoulos, Sarstedt, Fuchs, Kaiser, & Wilczynski, 2012; Sarstedt, 

Diamantopoulos, & Salzberger, 2016; Sarstedt, Diamantopoulos, Salzberger, & 

Baumgartner, 2016). This single-item measure was included in our example, however, for 

illustrative purposes of how such a question could be included in obtaining a PLS-SEM 

solution. Finally, the four exogenous constructs are measured by a total of 21 formative 

indicators. Exhibit 1.10 provides an overview of all items and item wordings. Respondents 

rated the questions on 7-point Likert scales, with higher scores denoting higher levels of 

agreement with a particular statement. In the case of the CUSA indicator, higher scores 

denote higher levels of satisfaction (1 = very dissatisfied; 7 = very satisfied). Satisfaction and 

loyalty were measured with respect to respondents’ own mobile phone service providers.

The measurement approach has been validated in different countries and applied 

in various research studies (e.g., Eberl & Schwaiger, 2005; Hult, Hair, Proksch, Ringle, 

Sarstedt, & Pinkwart, 2018; Radomir & Wilson, 2018; Raithel & Schwaiger, 2014; 

Raithel, Wilczynski, Schloderer, & Schwaiger, 2010; Schwaiger, Witmaier, Morath, 

Competence (COMP)

comp_1 [The company] is a top competitor in its market.

comp_2 As far as I know, [the company] is recognized worldwide.

comp_3 I believe that [the company] performs at a premium level.

Likeability (LIKE)

like_1 [The company] is a company that I can better identify with than other 

companies.

like_2 [The company] is a company that I would regret more not having if it no longer 

existed than I would other companies.

like_3 I regard [the company] as a likable company.

Customer Loyalty (CUSL)

cusl_1 I would recommend [the company] to friends and relatives.

cusl_2 If I had to choose again, I would choose [the company].

cusl_3 I will remain a customer of [the company] in the future.

Customer Satisfaction (CUSA)

cusa If you consider your experiences with [the company], how satisfied are you with 

[the company]?

Quality (QUAL)

qual_1 The products/services offered by [the company] are of high quality.

EXHIBIT 1.10 ■    Overview of Constructs and Indicators
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  25

& Hufnagel, 2021; Schloderer, Sarstedt, & Ringle, 2014; Sharma, Shmueli, Sarstedt, 

Danks, & Ray, 2021). Research has shown that, compared to alternative reputation 

measures, Schwaiger’s (2004) approach performs favorably in terms of convergent 

validity and predictive validity (Sarstedt, Wilczynski, & Melewar, 2013). The data set 

used for all analyses in this book stems from Hair, Hult, Ringle, and Sarstedt (2022) 

and has 344 responses regarding four major mobile network providers in Germany’s 

mobile communications market (for a newer dataset, see also Sarstedt, Ringle, & 

Iuklanov, 2023).

qual_2 [The company] is an innovator, rather than an imitator with respect to [the industry].

qual_3 [The company]’s products/services offer good value for money.

qual_4 The services [the company] offered are good.

qual_5 Customer concerns are held in high regard at [the company].

qual_6 [The company] is a reliable partner for customers.

qual_7 [The company] is a trustworthy company.

qual_8 I have a lot of respect for [the company].

Performance (PERF)

perf_1 [The company] is a very well-managed company.

perf_2 [The company] is an economically stable company.

perf_3 The business risk for [the company] is modest compared to its competitors.

perf_4 [The company] has growth potential.

perf_5 [The company] has a clear vision about the future of the company.

Corporate Social Responsibility (CSOR)

csor_1 [The company] behaves in a socially conscious way.

csor_2 [The company] is forthright in giving information to the public.

csor_3 [The company] has a fair attitude toward competitors.

csor_4 [The company] is concerned about the preservation of the environment.

csor_5 [The company] is not only concerned about profits.

Attractiveness (ATTR)

attr_1 [The company] is successful in attracting high-quality employees.

attr_2 I could see myself working at [the company].

attr_3 I like the physical appearance of [the company] (company logo, buildings, shops, 

etc.).

EXHIBIT 1.10 ■    Overview of Constructs and Indicators (Continued)
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26  Advanced Issues in PLS-SEM

PLS-SEM Software

To establish and estimate PLS path models, users can choose from a range of software pro-

grams. A popular early example of a PLS-SEM software program is PLS-Graph (Chin, 

1994), which is a graphical interface to Lohmöller’s (1987) LVPLS, the first user-friendly PLS 

software. Compared to the original LVPLS, which required the user to enter commands via 

a text editor, PLS-Graph represents a significant improvement, especially in terms of user-

friendliness. With the increasing dissemination of PLS-SEM in a variety of disciplines, sev-

eral other programs with user-friendly graphical interfaces were introduced to the market, 

such as SmartPLS (Ringle, Wende, & Becker, 2022) and WarpPLS (Kock, 2020). Finally, 

users with experience in the statistical software environment R can also draw on packages, 

such as csem (Rademaker et al., 2021) and SEMinR (Ray et al., 2022), which facilitate the 

flexible analysis of PLS path models. The new R software workbook of the primer on PLS-

SEM (Hair et al., 2022), with an electronic copy download available for free, illustrates all 

elements of the corporate reputation case study using the SEMinR package.

To date, SmartPLS is the most comprehensive and advanced program in the field 

(Sarstedt & Cheah, 2019). The software’s most recent version, SmartPLS 4, therefore 

serves as the basis for all case study examples in this book. The student version of the 

software is available free of charge at https://www.smartpls.com. It offers practically 

all functionalities of the full version but is restricted to data sets with a maximum 

of 100 observations. However, as the data set used in this book has more than 100 

observations (344 to be precise), we use the professional version of SmartPLS 4, which 

is available as a 30-day trial version at https://www.smartpls.com. The SmartPLS web-

site includes many additional resources, such as short explanations of PLS-SEM and 

software-related topics, a list of recommended literature, answers to frequently asked 

questions, tutorial videos for getting started using the software, and the SmartPLS 

forum, which enables you to discuss PLS-SEM topics and share ideas with other users.

Setting Up the Model in SmartPLS

Before we specify our model in SmartPLS 4, we need to have data that serve as the basis for 

running the model. SmartPLS 4 supports data imported from various file formats, such as 

Microsoft Excel (.xlxs), SPSS (.sav), comma-separated values (.csv), and text (.txt). The only 

aspect we have to pay attention to is that the first data row contains the variable names in text 

format and otherwise only numerical values (no text or special characters; also no numerical 

values in scientific format, e.g., 10E-7). The data we use with the reputation model can be 

downloaded either as a comma-separated value (.csv) or text (.txt) data set in the download 

section at https://www.pls-sem.com. Click on Save Target As . . .  to save the data to a folder 

on our hard drive or cloud drive. Next, run the SmartPLS software. When we use the New 

project option in the toolbar, a new project will be created. Then, we can use the Import data 

file option in the newly created project. Alternatively, we can right-click on the project and use 

the Import data file option. With this data, as explained in Chapter 2 of the book by Hair, 

Hult, Ringle, and Sarstedt (2022), we can create the PLS path model as shown in Exhibit 1.11.
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perf_2

perf_3

perf_4

perf_5

csor_1
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csor_3

csor_4

csor_5

attr_1 attr_2 attr_3

like_1 like_2 like_3

cusl_1
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CSOR
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QUAL

COMP

LIKE

CUSA

CUSL

ATTR

qual_2 qual_3 qual_4 qual_5 qual_6 qual_7 qual_8

comp_1 comp_2 comp_3

cusa

EXHIBIT 1.11 ■    Corporate Reputation Model in SmartPLS
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28  Advanced Issues in PLS-SEM

Alternatively, after starting the SmartPLS software, various sample projects appear 

in the main window under Sample Projects, which can be installed directly. When 

clicking on the Install link next to Example – corporate reputation (advanced), the 

advanced corporate reputation project will appear in the Workspace window (Exhibit 

1.12), located at the left of the screen. Next, double-click on the Corporate reputa-

tion model. Then the PLS path model as shown in Exhibit 1.11 will appear in the 

SmartPLS modeling window.

Following the systematic procedure for applying PLS-SEM presented in Hair, 

Hult, Ringle, and Sarstedt (2022), the next steps entail the evaluation of the reflec-

tively and formatively specified measurement models, followed by an assessment of 

the structural model. Readers are advised to consult the Primer on Partial Least Squares 

Structural Equation Modeling (PLS-SEM) (Hair, Hult, Ringle, & Sarstedt, 2022) for a 

detailed discussion and illustration of these analysis steps. The case study illustrations 

EXHIBIT 1.12 ■    The SmartPLS Workspace
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  29

in the following chapters will depart from here, assuming that the quality of the origi-

nal model’s measurement and structural models have been established.

SUMMARY

 • Understand the origins and evolution of PLS-SEM. The precursors to 

PLS-SEM were two methods (i.e., principle component regression and 

PLS-R) that used least squares estimation to develop solutions for single 

and multicomponent models. Further development of these procedures 

by Herman Wold led to the NIPALS algorithm and a revised generalized 

version of the PLS algorithm that focused on finding constructs. In the 

1980s Herman Wold proposed his “soft modeling basic design” underlying 

PLS-SEM as an alternative to CB-SEM. The latter method has been labeled 

as “hard” modeling due to its more stringent assumptions in terms of data 

distribution and sample size compared to PLS-SEM. While both approaches 

were developed at about the same time, CB-SEM became much more widely 

applied because of its early availability through the LISREL software in the 

late 1970s. It was not until the debut of Wynne Chin’s PLS-Graph software 

in the mid-1990s that PLS-SEM applications began increasing. With the 

release of SmartPLS 2 in 2005, PLS-SEM’s usage grew exponentially.

 • Comprehend model specification in a PLS-SEM framework. The model 

specification in PLS-SEM involves two sub-models—the structural model 

and the measurement model. Whereas the structural model specifies the 

relationships between the constructs, the measurement models express 

how to measure the construct utilizing a set of indicators. Measurement 

models can be specified reflectively, using effect (i.e., reflective) indicators, 

or formatively, using causal or composite indicators. Whereas constructs 

measured with causal indicators have an error term, this is not the case with 

composite indicators, which define the construct in full. Traditionally, 

composite indicators have been viewed as a means to combine several 

variables to represent some new entity, whose meaning is defined by the 

choice of indicators. However, more recent research argues that composite 

indicators can be used to measure any type of property to which the focal 

concept refers, including attitudes, perceptions, and behavioral intentions.

 • Describe the PLS-SEM algorithm’s basic functioning principles. The 

PLS-SEM algorithm uses the empirical data for the indicators and iteratively 

determines the construct scores, the path coefficients, indicator loadings 

and weights, and further statistics, such as R2 values and measures of the 

model’s out-of-sample predictive power. After initialization, the algorithm 

estimates structural and measurement model parameters seperately, holding 
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30  Advanced Issues in PLS-SEM

the other model elements constant in each iteration. The algorithm’s goal is to 

estimate parameters so residuals in the structural and measurement models are 

minimized. The results are typically standardized, meaning that, for example, 

the sizes of the path coefficients can be directly compared with each other 

even when the model estimation draws on differently scaled indicators. Recent 

extensions of the original PLS-SEM algorithm facilitate including sampling 

weights or estimating solutions comparable to common factor models.

 • Understand PLS-SEM’s key characteristics vis-à-vis CB-SEM. A crucial 

conceptual difference between PLS-SEM and CB-SEM relates to the way each 

method treats the constructs included in the model. CB-SEM considers the 

constructs as common factors, whereas PLS-SEM follows a composite model 

perspective using weighted composites of indicator variables to calculate scores 

that represent the constructs. Estimating a common factor model using PLS-

SEM produces a bias, but the bias produced by CB-SEM when estimating 

composite models is much more substantial. In model estimation, PLS-SEM 

follows a causal-predictive paradigm in that the method seeks to maximize 

(in-sample) prediction of a specified model developed based on theory and logic. 

Because of the way PLS-SEM estimates the model parameters, the method is not 

constrained by identification issues, even if the model becomes complex and is 

being estimated with little data—a situation that typically restricts CB-SEM’s 

use.

REVIEW QUESTIONS

 1. Who developed the PLS-SEM algorithm and what was the intention behind its 

development?

 2. What is the difference between common factor models and composite models?

 3. What is the difference between reflective and formative measurement models?

 4. How does the PLS-SEM algorithm work?

 5. What are the key characteristics that distinguish PLS-SEM from CB-SEM?

CRITICAL THINKING QUESTIONS

 1. Under what condition is PLS-SEM the preferred method over CB-SEM for 

prediction, and why?

 2. Please comment on the following statement: “Indicators in formative 

measurement models are error-free.”

 3. What is the difference between causal and composite indicators?
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Chapter 1  •  An Overview of Recent and Emerging Developments in PLS-SEM  31

 4. Are common factor models and reflective measurement models the same?

 5. Why should researchers test the predictive power of their PLS path models?

KEY TERMS

Artifacts

Causal indicators

Common factor models

Common factor-based SEM

Common variance

Composite indicators

Composite-based SEM

Consistent PLS-SEM (PLSc-SEM)

Correlation weights

Covariance-based structural equation 

modeling (CB-SEM)

Effect indicators

Endogenous constructs

Error terms

Exogenous constructs

Explaining and predicting (EP) theories

Explanatory power

Factor (score) indeterminacy

Factor weighting scheme

Formative measurement model

In-sample predictive power

Inner model

Measurement models

Metrological uncertainty

Mode A

Mode B

Outer models

Partial least squares path modeling 

(PLS-SEM)

Partial least squares regression (PLS-R)

Path weighting scheme

PLS-SEM algorithm

PLS-SEM bias

Principal components regression

Reflective indicators

Reflective measurement model

Regression weights

Reliability coefficient ρ
A

Sampling weights

Single-item measurement

Structural model

Sum scores

Weighted PLS-SEM (WPLS)
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