You are here

PLEASE NOTE: Sage UK Distribution including UK Books Customer Services will be closed for a stocktake from 27th November to 29th November. This affects only book orders and queries from the UK. Any orders placed during this period; or queries emailed, will be dealt with as normal when service resumes on 2nd December. Thank you for your patience and we apologise for any inconvenience caused.

Disable VAT on Taiwan

Unfortunately, as of 1 January 2020 SAGE Ltd is no longer able to support sales of electronically supplied services to Taiwan customers that are not Taiwan VAT registered. We apologise for any inconvenience. For more information or to place a print-only order, please contact uk.customerservices@sagepub.co.uk.

Geographical Data Science and Spatial Data Analysis
Share
Share

Geographical Data Science and Spatial Data Analysis
An Introduction in R

Additional resources:


December 2020 | 360 pages | SAGE Publications Ltd
We are in an age of big data where all of our everyday interactions and transactions generate data. Much of this data is spatial – it is collected some-where – and identifying analytical insight from trends and patterns in these increasing rich digital footprints presents a number of challenges.

Whilst other books describe different flavours of Data Analytics in R and other programming languages, there are none that consider Spatial Data (i.e. the location attached to data), or that consider issues of inference, linking Big Data, Geography, GIS, Mapping and Spatial Analytics.

This is a ‘learning by doing’ textbook, building on the previous book by the same authors, An Introduction to R for Spatial Analysis and Mapping. It details the theoretical issues in analyses of Big Spatial Data and developing practical skills in the reader for addressing these with confidence.
 
Chapter 1: Introduction to Geographical Data Science and Spatial Data Analytics
 
Chapter 2: Data and Spatial Data in R
 
Chapter 3: A Framework for Processing Data: The Piping Syntax and dplyr
 
Chapter 4: Creating Databases and Queries in R
 
Chapter 5: EDA and Finding Structure in Data
 
Chapter 6: Modelling and Exploration of Data
 
Chapter 7: Applications of Machine Learning to Spatial Data
 
Chapter 8: Alternative Spatial Summaries and Visualisations
 
Chapter 9: Epilogue on the Principles of Spatial Data Analytics

Supplements

Click for online resources
The online resources include:

·       Code Library of up-to-date R scripts from each chapter to help you feel confident using R.

·       Data Library with datasets to practice your skills on real-world data.

·       Journal Articles on important topics, such as critical spatial data science, to deepen your understanding.

This book is a must-read for anyone wishing to use R to analyse large spatial datasets. It is suitable for teachers and learners at all levels, building knowledge from the ground-up using relevant, real-world examples and easy to follow instructions.

Jonathan Huck
University of Manchester

Written by two renowned international experts, this is an excellent introductory book for students, teachers and researchers alike who have experience of using R and who want to further develop their skills in big data spatial science.

Scott Orford
Cardiff University

For instructors

Please select a format:

Select a Purchasing Option


Paperback
ISBN: 9781526449368
£44.99

Hardcover
ISBN: 9781526449351
£131.00

SAGE Knowledge is the premier social sciences platform for SAGE and CQ Press book, reference and video content.

The platform allows researchers to cross-search and seamlessly access a wide breadth of must-have SAGE book and reference content from one source.