You are here

The Sage website, including online ordering services, may be unavailable due to system maintenance on September 14th between 2:00 am and 8:30 pm BST. If you need assistance, please visit our Contact us page.

Thank you for your patience and we apologise for the inconvenience.

Logistic Regression
Share
Share

Logistic Regression
From Introductory to Advanced Concepts and Applications

  • Scott Menard - Sam Houston State University, USA, University of Colorado, USA


July 2009 | 392 pages | SAGE Publications, Inc
Logistic Regression is designed for readers who have a background in statistics at least up to multiple linear regression, who want to analyze dichotomous, nominal, and ordinal dependent variables cross-sectionally and longitudinally. The book begins by showing how logistic regression combines aspects of multiple linear regression and loglinear analysis to overcome problems both techniques have with the analysis of dichotomous dependent variables with continuous predictors. The logistic regression model is then examined in detail, including how to evaluate the overall model and how to evaluate the impact of the different predictors in the model for different types of research questions. Unique to this book is the extensive consideration qualitative (prediction tables) as well as quantitative indices of how well the model predicts the dependent variable. The book then examines what can go wrong with the model and how to detect and correct it; the use of logistic regression in path analysis; nominal and ordinal dependent variables; modifications to the logistic regression model when the cases are not completely independent of one another; the use of logistic regression models for longitudinal data with few and with many repeated measurements; and alternatives to logistic regression.

In each chapter, the basic model is explained and illustrated with applied examples, with a focus on translating from the research problem to the implementation of the model, then interpreting the results back to English. While not dependent on any one software package, limitations to existing software packages, and ways of getting around those limitations, are examined. The book brings together material on logistic regression that is often covered in passing or in limited detail in treatments of other topics such as event history analysis or multilevel analysis, and includes material not elsewhere available on the use of logistic regression with path analysis, linear panel models, and multilevel change models. Mathematical notation is kept to a minimum, allowing readers with more limited backgrounds in statistics to follow the presentation, but the book includes advanced topics that will be of interest to more statistically sophisticated readers as well.

 
Preface
 
Chapter 1. Introduction: Linear Regression and Logistic Regression
 
Chapter 2. Log-Linear Analysis, Logit Analysis, and Logistic Regression
 
Chapter 3. Quantitative Approaches to Model Fit and Explained Variation
 
Chapter 4. Prediction Tables and Qualitative Approaches to Explained Variation
 
Chapter 5. Logistic Regression Coefficients
 
Chapter 6. Model Specification, Variable Selection, and Model Building
 
Chapter 7. Logistic Regression Diagnostics and Problems of Inference
 
Chapter 8. Path Analysis With Logistic Regression (PALR)
 
Chapter 9. Polytomous Logistic Regression for Unordered Categorical Variables
 
Chapter 10. Ordinal Logistic Regression
 
Chapter 11. Clusters, Contexts, and Dependent Data: Logistic Regression for Clustered Sample Survey Data
 
Chapter 12. Conditional Logistic Regression Models for Related Samples
 
Chapter 13. Longitudinal Panel Analysis With Logistic Regression
 
Chapter 14. Logistic Regression for Historical and Developmental Change Models: Multilevel Logistic Regression and Discrete Time Event History Analysis
 
Chapter 15. Comparisons: Logistic Regression and Alternative Models
 
Appendix A: ESTIMATION FOR LOGISTIC REGRESSION MODELS
 
Appendix B: PROOFS RELATED TO INDICES OF PREDICTIVE EFFICIENCY
 
Appendix C: ORDINAL MEASURES OF EXPLAINED VARIATION
 
References
 
Index

Excellent logistic regression book, it outline the use and link it to most of the softwares out there

Professor DANIEL ACHEAMPONG
Accounting Dept, Strayer University - Online
November 28, 2013

I compared this book to Scott Long's book. I think Long's book is easier to use given that it has a Stata companion. However, I think both texts are very advanced and it would be great to have a more introductory text for graduate students with more limited math skills.

Professor Lorena Barberia
Ciência Política , Universidade de São Paulo
May 13, 2013

An excellent text. The content was too advanced for an introductory methods course. I would definitely adopt for a more advanced (upper-undergraduate and graduate) course.

Courtney Feldscher
Sociology Dept, University of Massachusetts
July 10, 2012

To advanced for course.

Professor David Turi
Business Admin Dept, Felician College
May 7, 2012

Sound book, good level for intermediate level students.

Dr Christos Makrigeorgis
School Of Management, Walden University
September 4, 2010

This is a great step by step look at a complex subject.

Professor Linka Griswold
Psychology Dept, Los Angeles Valley College
March 2, 2010

I will be looking at it during the current advanced statistics class with an eye to possible adoption next year. My initial impression is that it is very good, as is Scott's other work.

Dr Richard Dukes
Sociology Dept, University of Colorado
January 27, 2010

Excellent book - unfortunately too narrow for the advanced survey course. I will definitely make it a optional book.

Mr Brian Kreeger
Business Administration, Metropolitan State University
October 23, 2009

For instructors

Select a Purchasing Option

SAGE Research Methods is a research methods tool created to help researchers, faculty and students with their research projects. SAGE Research Methods links over 175,000 pages of SAGE’s renowned book, journal and reference content with truly advanced search and discovery tools. Researchers can explore methods concepts to help them design research projects, understand particular methods or identify a new method, conduct their research, and write up their findings. Since SAGE Research Methods focuses on methodology rather than disciplines, it can be used across the social sciences, health sciences, and more.

With SAGE Research Methods, researchers can explore their chosen method across the depth and breadth of content, expanding or refining their search as needed; read online, print, or email full-text content; utilize suggested related methods and links to related authors from SAGE Research Methods' robust library and unique features; and even share their own collections of content through Methods Lists. SAGE Research Methods contains content from over 720 books, dictionaries, encyclopedias, and handbooks, the entire “Little Green Book,” and "Little Blue Book” series, two Major Works collating a selection of journal articles, and specially commissioned videos.