You are here

SAGE Distribution including Books Customer Services will be closed for Stocktake 23rd-27th November. Service will resume on 28th November.
Doing Computational Social Science

Doing Computational Social Science
A Practical Introduction

Additional resources:

December 2021 | 688 pages | SAGE Publications Ltd

Computational approaches offer exciting opportunities for us to do social science differently. This beginner’s guide discusses a range of computational methods and how to use them to study the problems and questions you want to research.

It assumes no knowledge of programming, offering step-by-step guidance for coding in Python and drawing on examples of real data analysis to demonstrate how you can apply each approach in any discipline.

The book also:

  • Considers important principles of social scientific computing, including transparency, accountability and reproducibility.
  • Understands the realities of completing research projects and offers advice for dealing with issues such as messy or incomplete data and systematic biases.
  • Empowers you to learn at your own pace, with online resources including screencast tutorials and datasets that enable you to practice your skills and get up to speed.

For anyone who wants to use computational methods to conduct a social science research project, this book equips you with the skills, good habits and best working practices to do rigorous, high quality work.

Introduction: Learning to do computational social science
Part I: Foundations
Chapter 1: Setting up your open source scientific computing environment
Chapter 2: Python programming: The basics
Chapter 3: Python programming: Data structures, functions and files
Chapter 4: Collecting data from Application Programming Interfaces (APIs)
Chapter 5: Collecting data from the web: Scraping
Chapter 6: Processing structured data
Chapter 7: Visualisation and exploratory data analysis
Chapter 8: Latent factors and components
Part II: Fundamentals of text analysis
Chapter 9: Processing natural language data
Chapter 10: Iterative text analysis
Chapter 11: Exploratory text analysis
Chapter 12: Text similarity and latent semantic space
Part III: Fundamentals of network analysis
Chapter 13: Social networks and relational thinking
Chapter 14: Connection and clustering in social networks
Chapter 15: Influence, inequality and power in social networks
Chapter 16: Going viral: Modelling the epidemic spread of simple contagions
Chapter 17: Not so fast: Modelling the diffusion of complex contagions
Part IV: Research ethics and machine learning
Chapter 18: Research ethics, politics and practices
Chapter 19: Machine learning: Symbolic and connectionist
Chapter 20: Supervised learning with regression and cross-validation
Chapter 21: Supervised learning with tree-based models
Chapter 22: Neural networks and deep learning
Chapter 23: Developing neural network models with Keras and Tensorflow
Part V: Bayesian machine learning and probabilistic programming
Chapter 24: Statistical machine learning and generative models
Chapter 25: Probability: A primer
Chapter 26: Approximate posterior inference with stochastic sampling and MCMC
Part VI: Bayesian data analysis and latent variable modelling with relational and text data
Chapter 27: Bayesian regression models with probabilistic programming
Chapter 28: Bayesian hierarchical regression modelling
Chapter 29: Variational Bayes and the craft of generative topic modelling
Chapter 30: Generative network analysis with Bayesian stochastic blockmodels
Part VII: Embeddings, transformer models and named entity recognition
Chapter 31: Can we model meaning?: Contextual representation and neural word embeddings
Chapter 32: Named entity recognition, transfer learning and transformer models

This book adds two key components critical for social science students that are often lacking in other texts. The first is a discussion of key computing components starting at the most basic – often these steps are overlooked in texts written for computer science students. Second is the excellent grounding in and integration with social science theory and concepts.

Lorien Jasny
University of Exeter

McLevey has provided us with a book that clearly imparts the technical skills of computational methods, but crucially he has done so in a way that accessibly embeds them in a social science context. Whilst we’ve previously been told “how” to do computational social science, McLevey expertly ensures we understand “why” too.

James Allen-Robertson
Senior Lecturer / Computational Sociologist, Department of Sociology, University of Essex

Nice introductory text on computational methods for social scientists using Python. The text is rather comprehensive and covers a lot of contemporary problems which may be of great interest for aspirant scientists/ practitioners in their daily work.

Mr Gavin van der Nest
CAPHRI, Care & Public Health Research Institute , Maastricht University
October 24, 2022

The McLevey book covers modern machine learning style research for both information science and computing students. For other social science students who have programming skills, or are at a graduate level, then this book might also be a good resource with plenty of useful information. However it is written using a handbook style and lacking an academic thrust. It is very practical and exercise based. Students would still need the Oates book to help them writeup.

Dr Steve McKeever
Department of Informatics & Media, Uppsala University
August 8, 2022

For instructors

Please select a format:

Select a Purchasing Option

ISBN: 9781526468185

ISBN: 9781526468192

Help your students build critical thinking skills