You are here

Delays in shipping: Due to current delays in our warehouse shipping services, please expect longer than usual delivery times for any print book and journal orders.  If you require instant access to a book, please consider purchasing a digital copy via an alternative online retailer.

For instructors, only digital inspection copy requests are available. If you require a print inspection copy, please contact your local Academic Sales Consultant.

For further assistance please visit our Contact us page. Thank you for your patience and we apologise for the inconvenience.

Best Practices in Data Cleaning

Best Practices in Data Cleaning
A Complete Guide to Everything You Need to Do Before and After Collecting Your Data

First Edition

June 2013 | 296 pages | SAGE Publications, Inc
Many researchers jump straight from data collection to data analysis without realizing how analyses and hypothesis tests can go profoundly wrong without clean data. This book provides a clear, step-by-step process of examining and cleaning data in order to decrease error rates and increase both the power and replicability of results.

Jason W. Osborne, author of Best Practices in Quantitative Methods (SAGE, 2008) provides easily-implemented suggestions that are research-based and will motivate change in practice by empirically demonstrating, for each topic, the benefits of following best practices and the potential consequences of not following these guidelines. If your goal is to do the best research you can do, draw conclusions that are most likely to be accurate representations of the population(s) you wish to speak about, and report results that are most likely to be replicated by other researchers, then this basic guidebook will be indispensible.

Chapter 1. Why Data Cleaning is Important: Debunking the Myth of Robustness
Part 1. Best Practices as you Prepare for Data Collection
Chapter 2. Power and Planning for Data Collection: Debunking the Myth of Adequate Power
Chapter 3. Being True to the Target Population: Debunking the Myth of Representativeness
Chapter 4. Using Large Data Sets with Probability Sampling Frameworks: Debunking the Myth of Equality
Part 2. Best Practices in Data Cleaning and Screening
Chapter 5. Screening your Data for Potential Problems: Debunking the Myth of Perfect Data
Chapter 6. Dealing with Missing or Incomplete Data: Debunking the Myth of Emptiness
Chapter 7. Extreme and Influential Data Points: Debunking the Myth of Equality
Chapter 8. Improving the Normality of Variables through Box-Cox Transformation: Debunking the Myth of Distributional Irrelevance
Chapter 9. Does Reliability Matter? Debunking the Myth of Perfect Measurement
Part 3. Advanced Topics in Data Cleaning
Chapter 10. Random Responding, Motivated Mis-Responding, and Response Sets: Debunking the Myth of the Motivated Participant
Chapter 11. Why Dichotomizing Continuous Variables is Rarely a Good Practice: Debunking the Myth of Categorization
Chapter 12. The Special Challenge of Cleaning Repeated Measures Data: Lots of Pits to Fall into
Chapter 13. Now that the Myths are Debunked... Visions of Rational Quantitative Methodology for the 21st Century

“This book provides the perfect bridge between the formal study of statistics and the practice of statistics. It fills the gap left by many of the traditional texts that focus either on the technical presentation or recipe-driven presentation of topics.”

Elizabeth M. Flow-Delwiche
Community College of Baltimore County

“The first comprehensive and generally accessible text in this area.”

J. Michael Hardin
The University of Alabama

For instructors

SAGE Research Methods is a research methods tool created to help researchers, faculty and students with their research projects. SAGE Research Methods links over 175,000 pages of SAGE’s renowned book, journal and reference content with truly advanced search and discovery tools. Researchers can explore methods concepts to help them design research projects, understand particular methods or identify a new method, conduct their research, and write up their findings. Since SAGE Research Methods focuses on methodology rather than disciplines, it can be used across the social sciences, health sciences, and more.

With SAGE Research Methods, researchers can explore their chosen method across the depth and breadth of content, expanding or refining their search as needed; read online, print, or email full-text content; utilize suggested related methods and links to related authors from SAGE Research Methods' robust library and unique features; and even share their own collections of content through Methods Lists. SAGE Research Methods contains content from over 720 books, dictionaries, encyclopedias, and handbooks, the entire “Little Green Book,” and "Little Blue Book” series, two Major Works collating a selection of journal articles, and specially commissioned videos.