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Complexity and 

Systems Thinking

Y a s m i n  M e r a l i  a n d  P e t e r  A l l e n

Once the whole is divided, the parts need names.
There are already enough names.
One must know when to stop.
Knowing when to stop averts trouble.
Tao in the world is like a river flowing home to 
the sea.

Lau Tsu, Tao Te Ching

INTRODUCTION

Systems thinking has evolved over the 
millennia as people have looked for ways to 
articulate the features of the world around 
them in a coherent manner.1 Starting from 
the definition of a system as an integrated 
whole made up of interconnected parts, vari-
ous formalizations of systems thinking in a 
way that would be of interest to managers 
have emerged over time as people have 
looked for ways of rationalizing their interac-
tions with the world. These formalizations 
give us a set of ontological and epistemo-
logical devices that have been used to define 
what the world is, to explain how it works, 
and to define and justify interventions that 
are intended to change, control or constrain 
the future behaviour of that world.

The ancients debated the role of structure, 
form and composition2 in determining the 

behaviour of social, physical and natural 
systems, and engaged with the transience of 
system phenomenology,3 and we find these 
themes recurring in modern theories of 
systems behaviour. Successive schools of 
systems thinking have focused on specific 
aspects of systems properties, and developed 
an apparatus to confront the challenges of 
their time in dealing with complexity.

In this chapter we track the evolution in 
the Western scientific tradition of systems 
ideas to deal with complexity, and reflect on 
the developments that are most likely to be 
influential in shaping management thinking 
from here on.

Our account takes us from Bertalanffy’s 
biologically inspired GST (General Systems 
Theory), through the cybernetics of the Macy 
Group and the analytical ethos of systems 
engineering, the theories of self-organization 
and self-production in chemistry and life, to 
the present day engagement with the ideas of 
complexity science.

This trajectory crosses and re-crosses 
traditional divisions between the physical, 
biological and chemical sciences, and it takes 
us from the Newtonian predictability of the 
trajectories of complex dynamical systems in 
space to the present day challenges of dealing 
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with the unpredictable trajectories of complex 
dynamical systems in space-time. We shall 
see how the different conceptualizations of 
systems and their complexity have affected 
the ontological and epistemological assump-
tions for successive models for managing 
complexity in socio-economic contexts.

SYSTEMS THINKING

Based on the definition of a system as an 
integrated whole made up of interconnected 
parts, axiomatic to traditional systems think-
ing are:

the existence of a distinct entity that can be  •
identified and explicitly defined as ‘the system’ 
or ‘the whole’;
the composition of ‘the whole’ from a number of  •
inter-connected parts; and
the existence of distinctive properties that can  •
be ascribed to ‘the whole’ but not to any of the 
individual parts that constitute ‘the whole’ (i.e. 
‘the whole’ is more than the sum of its parts).

Systems thinking is often defined by its 
contrast to the Cartesian paradigm which is 
characterized by the belief that the behaviour 
of the whole can be understood entirely from 
the properties of its parts. Systems thinking, 
on the other hand, asserts that systems cannot 
be understood by analysis – the properties of 
the parts can only be understood within the 
larger context of the whole.

The composition (what the components 
are (made of )), structure (how the compo-
nents are connected) and organization (how 
the components interact to maintain the 
coherent existence of the system as a distinc-
tive ‘whole’) of a system together define the 
identity of the system at any given moment. 
As we shall see, these three aspects have 
received varying degrees of attention in the 
different families of systems thinking and 
practice that have evolved in diverse fields 
and been adopted and adapted by manage-
ment thinkers to deal with complexity over 
the years.

General Systems Theory

The formalization of modern day systems 
thinking goes back to Ludwig von 
Bertalanffy’s formulation of the General 
Systems Theory (GST) in the first half of the 
twentieth century as

… an important means of controlling and 
instigating the transfer of principles from one field 
to another, and it will no longer be necessary to 
duplicate or triplicate the discovery of the same 
principle in different fields isolated from each 
other. (Bertalanffy, 1968)

In his exposition of the GST in 1940, 
Bertalanffy argued that the laws of classical 
physics that could be applied to predict the 
behaviour of physical systems were based on 
assumptions of systems closure and 
equilibrium dynamics that did not hold for 
biological systems. So, for example, whilst 
the Second Law of Thermodynamics states 
that the entropy (associated with the degree 
of disorder) of an isolated (closed) system 
which is not in equilibrium will tend to 
increase over time, approaching a maximum 
value at equilibrium, living systems are open 
systems capable of maintaining ordered 
steady states under non-equilibrium condi-
tions. This sets the stage for subsequent 
developments in systems thinking directed at 
understanding the dynamics that underpin 
the maintenance of order in open systems. 
Bertalanffy provided a point of connection 
for other developments in the study of open 
systems in diverse fields.

In the management field, systems thinking 
began to erode the Newtonian paradigm of a 
clockwork universe governed by determinis-
tic laws of nature. Developments in the 
earlier part of the twentieth century were 
predicated on the design paradigm for man-
agement and problem solving. The emphasis 
was predominantly on the design of organi-
zations as systems that could be regulated 
and controlled by management intervention. 
Later developments signalled a shift away 
from the design paradigm, as organizational 
scholars began to engage with ideas of 
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self-organization, emergence, adaptation and 
co-evolution as mechanisms to explain the 
unintended consequences of designed 
management interventions.

The science of cybernetics, Maturana and 
Varela’s conceptualization of autopoiesis 
(Maturana and Varela, 1973) and Prigogine’s 
work with dissipative systems (Prigogine, 
1967) are amongst the most influential 
forces in the evolution of ideas about the 
management and organization of systems. 
Cybernetics focused on mechanisms for 
control and co-ordination in machines and 
organisms, and gave rise to management 
theories for organizational design in the 
first part of the twentieth century. Maturana 
and Varela focused on the patterns of pro-
cess and organization that defined living 
systems, and their work has been influential 
in the development of theories of self-
organization and the maintenance of identity 
in social systems (Luhmann, 1990; Merali, 
2002). Prigogine’s work was influential in 
the development of ideas about the dynam-
ics underpinning organizational transforma-
tion – shifting the focus from being to 
becoming.

THE DESIGN PARADIGM

In this section we look at the contributions of 
cybernetics and systems engineering to man-
agement thinking. Both approaches grew out 
of the research activity in the Second World 
War, and were influential in the development 
of management ideas about the way in which 
organizational structure and control mecha-
nisms could be designed in order to meet the 
challenges of managing large, complex 
systems.

Whilst systems engineering focused on 
controlling complexity by breaking down 
large organizational structures into smaller, 
more manageable ones, cybernetics raised 
the attention of managers to the organizing 
principles that governed the nonlinear 
dynamics of structurally stable systems.

Cybernetics: patterns of control

The cybernetics movement began during the 
Second World War. Norbert Weiner coined 
the term cybernetics from the kybernetes 
(steersman) and defined it as a new science 
of ‘control and communication in animal and 
machine’. The conceptual framework for 
cybernetics was developed in the Macy 
meetings (the first of which was held in 
1946). The multidisciplinary membership of 
the Macy group included Weiner, von 
Neumann, McCullough, Shannon Mead and 
Bateson. Their agenda of developing a self-
guiding, self-regulating machine ran along-
side an interest in discovering the common 
principles of organization in diverse systems 
and in understanding the neural mechanisms 
underlying mental phenomena to create an 
exact science of the mind. Subjects like com-
plexity, self-organization, connectionism and 
adaptive systems had been initiated already 
in the 1940s and 1950s.

The participants of the Macy conferences 
went on to make a number of important con-
tributions to the fields of computer science, 
artificial intelligence, cognition, philosophy, 
information theory, economics, and ecology. 
John von Neumann’s invention of cellular 
automata and self-reproducing systems has 
been incorporated into modern-day 
complexity science modelling approaches.

A major contribution of cybernetic move-
ment to management science in the early part 
of the twentieth century was the conceptuali-
zation of feedback loops between system 
components as regulating mechanisms for 
the system’s performance. The overall regu-
latory mechanism for the system is based on 
the existence of a circular arrangement of 
causally connected components – the output 
of each component either has a positive or 
negative effect on the output of the next 
component. The overall behaviour of the 
system depends on the cumulative effect of 
all the links between its components – a 
system containing an odd number of negative 
links will display a self-balancing behaviour, 
whilst one that has an even number of 
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negative links will display a self-reinforcing 
exponential runaway behaviour.

The fundamental contribution of this con-
ceptualization to general systems theory was 
the distinction of the pattern of organization 
from physical structure.

The early developments in management 
science based on cybernetic principles 
focused on the exploitation of negative feed-
back loops for the self-regulation of systems 
and the maintenance of stability. The impor-
tance of positive feedback mechanisms only 
entered mainstream management thinking in 
the 1990s along with the interest in under-
standing the network dynamics underpinning 
discontinuities in the competitive landscape.

Two of the most prominent developments 
derived directly from the cybernetic move-
ment in the field of management are Jay 
Forrester’s System Dynamics and Stafford 
Beer’s Viable Systems Model.

System Dynamics
System Dynamics grew out of Forrester’s 
work on applying the theoretical apparatus of 
control theory and the nonlinear dynamics 
associated with the feedback mechanisms 
of cybernetics to ‘enterprise design’ in the 
1950s.

It is predicated on the development of 
models that define an enterprise in terms of 
the structure of the feedback loops underpin-
ning its dynamic behaviour. The focus of the 
model is on the long-term patterns and inter-
nal organizing structure of closed information 
loops and their role in controlling and regu-
lating the enterprise’s behaviour in response 
to exogenous stimuli and endogenous 
fluctuations.

Over the years there has been a prolifera-
tion of modelling tools for System Dynamics 
to enable the representation of the causal 
structures of problems in terms of stocks and 
flows and feedback loops. The overall pat-
tern of the feedback relationships is defined. 
The use of such tools has been important in 
promoting the use of System Dynamics 
models to design policy interventions and to 
test the potential of these interventions to 

effect desirable outcomes by affecting the 
relative potency of feedback loops. In 
particular, by supporting the modelling and 
simulation of complex systems with large 
numbers of variables within multiple inter-
acting feedback loops, System Dynamics 
enables decision makers to explore the 
potential of their interventions to generate 
unintended consequences. In practice, the 
predictive power of System Dynamics simu-
lations and their utility for designing inter-
ventions is limited by the extent to which a 
persistent set of feedback mechanisms and 
their causal effect can be defined for the 
lifetime of the model.

In systems where it is possible to accurately 
identify the pattern of feedback loops and the 
assumption of structural stability holds – i.e. 
new variables and equations do not appear 
during the time that the ‘simulation’ repre-
sents, System Dynamics models can be useful, 
and their predictions meaningful. However, 
this is no longer the case if the assumption of 
structural stability ceases to hold – e.g. if new 
mechanisms and innovations appear, or 
resources and factors that were not even 
included in the original model suddenly 
become important, or people change their 
behaviour. So, a System Dynamics model 
may be useful within the time span that its 
structure actually agrees with that of reality, 
but could be very misleading if this strong 
limitation was neither stated nor understood.

The Viable System Model
The Viable System Model (VSM) also origi-
nated in the 1950s, and was conceived by 
Stafford Beer as a generic blue-print, or tem-
plate, for the organizing structure of any 
autonomous system. According to Beer, any 
organization can be defined in VSM terms as 
a set of systems nested within systems, 
embodying a recursive organizing structure.

The generic VSM template comprises a 
configuration of what Beer defines as the:

… five necessary and sufficient subsystems 
interactively involved in any organism or organiza-
tion that is capable of maintaining its identity 
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independently of other such organisms within a 
shared environment. (Beer, 1985)

The generic VSM template is replicated at all 
levels of detail within the nested structure: 
the organizing architecture is fractal in nature, 
displaying the self-similar VSM template at 
every level.

Labelled as ‘Systems 1–5’ the subsystems 
respectively take care of the primary function 
of the organization, information and commu-
nication, governance, environmental moni-
toring, policy and strategy. According to the 
VSM theory, an organization is viable if and 
only if it has this specified inter-related set of 
management functions embodied recursively 
at all levels of organization. If any of the sub-
systems are absent or defective, the viability 
of the organization will be compromised.

VSM has been widely used for organiza-
tional diagnosis and design: its fractal nature 
unifies its application at all scales to define 
the management structures for maintaining a 
cohesive organizational structure and iden-
tity. Beer’s own work on the diagnosis of 
socio-political systems illustrates the grand 
scope of VSM applications.

System Dynamics and VSM conform to a 
design worldview based on assumptions of 
structural stability, such that desired behav-
iours of complex systems can be brought 
about in a largely deterministic manner by 
management interventions on feedback loops. 
This view has sometimes been criticized for 
‘reifying’ some temporary description, and 
for not taking into account the non-rational 
behaviour of human actors and the emergent 
aspects of collective behaviours. This criti-
cism has been even more strongly levelled at 
the other strand of systems thinking (Systems 
Engineering) that grew out of the research 
activity from the Second World War.

The engineering of systems: 
constructing complex structures

In addition to the emergence of the cyber-
netic movement, a more analytic approach to 

dealing with complexity also grew out of the 
operations research activity in the Second 
World War, based on the definition of systems 
in terms of hierarchical structures and modu-
lar organization. At any level in the hierarchy 
the system could be partitioned into a set of 
interacting subsystems, which could them-
selves be decomposed further into subsys-
tems at successively more granular levels of 
detail. The technical and management chal-
lenge lay in the partitioning of projects, sys-
tems and development work without losing 
the holistic view of the system. The concep-
tual challenge lay in the definition of bound-
aries and interfaces in a way that would 
preserve the integrity of the reassembled 
whole. This strand of systems thinking, typi-
fied by Systems Engineering and Software 
Engineering (often classified as the ‘hard’ 
systems approaches) focused on the internal 
consistency of modularized systems, whilst 
Soft Systems Methodology focused on the 
problematic definition of the ‘whole’ for 
human activity systems.

Systems Engineering
Systems Engineering as an approach and 
methodology grew in response to the 
increased size and complexity of systems and 
projects, it:

recognizes each system is an integrated whole 
even though composed of diverse, specialized 
structures and sub-functions. It further recog-
nizes that any system has a number of objectives 
and that the balance between them may differ 
widely from system to system. The methods seek 
to optimize the overall system functions accord-
ing to the weighted objectives and to achieve 
maximum compatibility of its parts. (Chestnut, 
1965)

This engineering approach to the manage-
ment of complexity by modularization was 
re-deployed in the software engineering dis-
cipline in the 1960s and 1970s with a prolif-
eration of structured methodologies that 
enabled the analysis, design and develop-
ment of information systems by using tech-
niques for modularized description, design 
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and development of system components. 
Yourden and DeMarco’s Structured Analysis 
and Design, SSADM, James Martin’s 
Information Engineering, and Jackson’s 
Structured Design and Programming are 
examples from this era. They all exploited 
modularization to enable the parallel devel-
opment of data, process, functionality and 
performance components of large software 
systems. The development of object orienta-
tion in the 1990s exploited modularization to 
develop reusable software. The idea was to 
develop modules that could be mixed and 
matched like Lego bricks to deliver to a 
variety of whole system specifications. The 
modularization and reusability principles 
have stood the test of time and are at the 
heart of modern software development.

Introducing the axiological dimension: 
soft systems thinking
Whilst the cybernetic approaches had their 
roots in the desire to construct a self-guiding, 
self-regulating machine and create a science 
of the mind, and both VSM and System 
Dynamics have been used to explore aspects 
of social systems, none of the approaches 
covered so far dealt explicitly with human 
values and motivation.

Peter Checkland’s conceptualization of the 
Soft Systems Methodology (Checkland and 
Scholes, 1990) grew out of his critique of the 
way in which systems engineering methods 
neglected the human dimension of the con-
text within which systems were conceived 
and used. Soft Systems Methodology (SSM) 
is important in the history of systems engi-
neering because of its explicit treatment 
of human purpose and value-based percep-
tions. Whilst the systems engineering 
approaches focus on the efficacy and internal 
consistency of systems specifications and 
their development – i.e. building the system 
right, SSM focuses on the often contested 
question of what the ‘right’ system should be. 
Subsequent attempts have been made to fuse 
SSM with the structured approaches of sys-
tems engineering, but SSM remains at its 
most powerful when used freely as an 

approach for exploring, making sense of, and 
defining multiple views of problem situa-
tions and their potential solutions.

SSM can be used both for general problem 
solving and in the management of change. Its 
primary use is in the analysis of complex 
situations where there are divergent views 
about the definition of the problem situation 
(e.g. How to improve health services deliv-
ery; How to manage disaster planning; When 
should mentally disordered offenders be 
diverted from custody? What to do about 
homelessness amongst young people?), and 
the transformation that it needs to undergo.

In SSM the problem situation is viewed as 
a human activity system with multiple stake-
holders having different perceptions about 
the system and its purpose. In the early 
stages of the method each stakeholder is 
engaged in defining explicitly what the prob-
lem situation is, and what transformation it 
must undergo to achieve a more desirable 
state of affairs. As part of this exercise each 
stakeholder has to make explicit the 
Weltanschaaung (the ‘world outlook’ and 
value assumptions) that the transformation 
definition is based on. Each stakeholder then 
goes on to define the activities that must be 
undertaken to deliver the transformation, 
along with the requisite resource require-
ments and criteria for evaluating the effec-
tiveness, efficacy and efficiency of the 
proposed transformation. The different 
stakeholder ‘models’ of transformation are 
then fed into a collective debate and discus-
sion with the objective of arriving at a deci-
sion about the way forward that would be 
systemically desirable and culturally 
feasible.

Whilst SSM (along with other approaches 
arising out of the more general socio-technical 
school of management and critical systems 
thinking) was important in pointing to the 
importance of human and social values and 
perceptions in decision making and its out-
comes, it remains within the design para-
digm. Its focus is on specifying and designing 
the ‘right’ system intervention to achieve a 
desired state of affairs. Whilst it highlights 
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the messiness of human activity systems and 
acknowledges the diversity that is accommo-
dated in social organization, its design is to 
enable all stakeholders to see the whole, 
diverse problem space, and to take a collective 
decision about the best way forward.

Models in the design paradigm

Making models of complex systems and 
situations is a powerful way of understanding 
and testing the assumptions that we make 
about the structure and dynamics of 
systems.

We understand situations by making 
creative, but simplifying assumptions. We 
define the domain in question (the boundary) 
and by establishing some rules of classifica-
tion (a dictionary) that allow us to say what 
things were present and when. This means 
that we describe things strategically in terms 
of words that stand for classes of objects. The 
value associated with an element in a model 
(e.g. number, price) may be both related to 
the internal state of the element and also 
affected by processes or mechanisms that link 
it to other elements. This allows us to under-
stand the changes in a variable in terms of 
both internal conditions and also the changes 
that occur in the values of the other variables 
within the system. If the purpose of defining 
the system is to achieve an explanation of the 
linked changes in the values of the different 
components, then we need to include within 
the system the majority of causal links possi-
ble, and allow weaker links to be left in the 
environment. In other words, there may be a 
succession of levels of description corre-
sponding to the natural clustering of linkages, 
such as for example, atoms, cells, organisms, 
groups, firms, industries, economies, societies 
up to the planet. The point is that in using a 
systems approach to characterize a situation, 
there are really three levels of description 
involved: the internal nature of the elements; 
the different variables in interaction making 
up the ‘system’; the effects and links con-
nected to the system environment.

The staging posts in the evolution of 
systems thinking have all been associated 
with different types of assumptions about 
what constitutes a ‘good enough’ abstraction 
of reality as a basis for the development of 
models that would allow us to:

make predictions about future system states;  •
and
define interventions in the present that would  •
generate desired behaviours of the system at 
some future point.

In Figure 1.1 we show how successive 
assumptions are made in the development of 
models in order to ‘understand’ the real situ-
ation. On the left-hand side we have the 
‘cloud’ of reality and practice. Approaches 
like SSM engage with this by attempting to 
capture and systematize descriptions of per-
ceptions of reality from different stakeholder 
perspectives.

The ‘science’ of modelling begins by 
deciding on a boundary within which an 
explanation will be attempted, in the context 
of the environment outside. The second 
assumption is that of classification. The ele-
ments present within the boundary are 
classified into types, so that potentially, pre-
viously established behaviour and responses 
of similar types can be used to predict 
behaviour. In examining any evolving system 
of interest over some long time, however, it 
will be found that qualitative evolution has 
occurred in which some types of component 
have disappeared, others have changed and 
transformed, and others still have appeared 
in the system initially as innovations and 
novelties.

Figure 1.1 shows us how starting from 
‘reality’ on the left, about which no assump-
tions have been made, different types of rep-
resentation and model can be made providing 
that the necessary assumptions hold (Allen 
et al., 2007). These different representations 
pass from one of pure acceptance through 
various intermediate views to one of complete 
deterministic certainty when prediction is 
believed possible. In the development of 
these representations and understandings of a 
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Figure 1.1 Successive assumptions that lead to various ‘scientific’ understandings 
of a situation
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situation, the inherent openness of the future 
is constrained by two basic assumptions:

the closure of the system to unknown outside  •
influences; and
the homogeneity and fixity of the classes of  •
internal elements.

If these two assumptions can reasonably 
be made, then in fact the system may well 
behave in a predictable way. It really reduces 
to saying that providing nothing new hap-
pens in the environment and that system ele-
ments continue to act as they have been, we 
can predict the future. However, such an 
approach may work for artefacts that are only 
used in environments for which they were 
designed, but not for living things which can 
learn, get bored and be creative. Also, even 
the first assumption implies that all the inter-
actions between system and environment are 
known and held within given bounds. But 
in reality, our system is an ‘intellectual 
construction’ which captures some, or many 

or most of the interactions between it and the 
environment but is constrained by the 
bounded rationality imposed by the modeller: 
it does not include the things that the model-
ler does not know about, or considers to be 
irrelevant. Indeed, it is through events and 
crises that some of the things we did not 
know will reveal themselves.

The assumptions are specifically shown in 
Table 1.1.

If we are interested in understanding the 
behaviour of the existing system then we can 
simply take the inventory and description 
now, and consider the ‘working’ of the com-
ponents, bearing in mind the way that differ-
ent aspects and elements are connected. This 
assumes structural stability and takes us 
away from open, evolutionary change, to the 
effects of running a fixed set of processes.

By considering only the present and 
assuming structural stability of our current 
system, we can generate models that govern 
the dynamics of the probability distributions 
of the different variables. Such models are 



COMPLEXITY AND SYSTEMS THINKING 39

systems models that are very useful in study-
ing the resilience and risk of collapse of 
organizations or structures as a result of fluc-
tuations in the environment and within the 
system. These models take into account not 
only the ‘average’ dynamics of such systems 
but their different possible futures in which 
luck can play a positive or negative influ-
ence. In other words, such models can con-
sider how some particular shock or internal 
event may disturb the behaviour of the 
system, taking into account all possible 
sequences of events – including those that are 
possible but improbable. Resilience and con-
tingency planning is not just about how a 
system will respond to a particular shock or 
disturbance but the relative probabilities of 
different possible pathways into the future – 
some corresponding to a return to normal 
functioning and others to different kinds of 
failure or collapse.

This is the essence of calculating risks and 
attempting to design systems that are resilient 
and capable of dealing with possible events 
and fluctuations. Such applications are of 
great importance for logistics, supply and 
demand networks and production systems. 
Systems models can be developed that can be 
used to examine their performance and also 
their resilience and the risk of failure under 
various circumstances. Structural stability 

and essentially fixed structural elements can 
be assumed if, for example, the systems are 
designed and owned by single agents. Of 
course, if the different elements should be 
managed by different agents with their own 
motives and learning capacity, models can be 
used to explore the effects of different assump-
tions of what these might be. In any case, 
these probabilistic dynamic models have been 
developed in the natural sciences and can be 
applied to help explore, design and make 
decisions in human complex systems.

If the events considered are discreet, then 
the running is according to a probabilistic 
dynamics, and we have what is called sto-
chastic nonlinear dynamics, where different 
regimes of operation are possible, but the 
underlying elements never change nor learn, 
nor tire of their behaviours.

In Table 1.1 we have set out two pathways 
to greater simplification and easier under-
standing. The first pathway is to assume 
that we can use average rates instead of 
probabilities for the events, in which case we 
arrive at deterministic system dynamics. This 
is in general, nonlinear dynamics and may 
be cyclical or chaotic or at equilibrium, but 
what happens is certain, simple and easy to 
understand.

The second pathway is to suppose that 
the dynamic probabilities move rapidly to 

Table 1.1 The general complexity framework

Number Assumption made Resulting model

1 Boundary assumed Some local sense-making possible – no structure supposed.
2 Classification assumed Strategic, open-ended evolutionary – structural change occurs. 

Statistical distributions part of the evolutionary process can be 
multi-modal. 

3 Average types Operational, probabilistic, nonlinear equations, master equations, 
Kolmogorov equations – assumed structurally stable. Statistical 
distributions can be multi-modal or power laws.

First pathway
4 Statistical attractors Self-organized criticality, power law distributions.

Second pathway
4 Average events, dynamics of average 

agents
Deterministic mechanical equations, system dynamics – assumed 
structurally stable. No statistical distribution.

5 Attractors of nonlinear dynamics Study of attractors, catastrophe theory. Nonlinear dynamics with 
point, cyclic or chaotic/strange attractors. 
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equilibrium – to a stationary distribution. 
This is a particular way to define a ‘system’ 
since it is one in which the interactions are 
assumed to maintain the form of the distribu-
tion. The work of Bak on sand piles led to the 
idea that this stationarity expressed that the 
system attained a self-organized criticality. 
So, for example, the probabilities of earth-
quakes, or of cities or firms of different sizes 
is considered to result from systemic interac-
tions that will tend to restore the stationary 
distribution should it be disturbed. For many 
years the work of Zipf on word frequencies 
and on city sizes showed from the data that 
the distribution in question was particularly 
simple – a seemingly fixed negative power 
law governing the probability of finding a 
city of a given size. The US distribution of 
city sizes for example between 1790 and 
today has been described by a Zipf exponent 
of varying between 0.98 and 0.75 which is a 
remarkably stable curve. However, this appar-
ent stability hides a great deal of dynamics 
since individual cities have occupied very dif-
ferent places in this scheme. Similarly, for 
firm sizes, although the overall curve for US 
firms is fairly stable the fate of each individ-
ual firm is still quite dramatic ending of 
course, as all things must, in extinction. 
While these ideas are interesting it is difficult 
to see how management can use these results 
in any way to make decisions. Rather it is true 
that agents struggle to attain their ends what-
ever that may be, and the interactions of the 
system seem to enmesh them in a fairly stable 
collective outcome. However, recently Toyota 
overtook General Motors as the largest auto-
mobile producer and so the distribution is in 
fact populated by large amounts of dynamic 
change and the probabilistic nature of the 
distribution by no means reduces agents to 
impotence. Bad management or lack of effort 
will simply hasten the demise that is the over-
all outcome that the distribution promises.

This discussion exposes some of the 
limitations associated with the assumptions of 
structural stability, equilibrium assumptions 
and the use of average types and distributions 
to describe system properties. In the next 

sections we look at how systems thinking in 
the second part of the twentieth century 
shifted away from assumptions of structural 
stability to focus on the dynamics of open, 
out-of-equilibrium systems and the impor-
tance of microdiversity in heterogeneous 
populations.

THE SCIENCE OF COMPLEX SYSTEMS: 
COMPLEX ADAPTIVE SYSTEMS

The later part of the twentieth century saw a 
questioning of the popularity of centralized, 
hierarchical management control, accompa-
nied by a growing concern about the unin-
tended and unforeseen consequences of 
planned management interventions.

Herbert Simon’s articulation of bounded 
ration ality in decision making and 
Mintzberg’s articulation of strategy as emer-
gent (Mintzberg, 1978) were important mile-
stones in management thinking. Both pointed 
to the limitations of the planned approaches of 
decision makers in ensuring expected out-
comes of management action, and fuelled the 
search for alternatives to the design paradigm.

As early as 1957, Simon highlighted the 
limitations in informational and cognitive 
scope and capacity of managers to make 
optimal decisions in complex situations, due 
to bounded rationality:

boundedly rational agents experience limits in 
formulating and solving complex problems and in 
processing (receiving, storing, retrieving, transmit-
ting) information. (Simon, 1957)

Simon’s work was perceived at the time as 
a challenge to develop better optimization 
techniques within the design paradigm, but 
in fact it pointed to the more profound issue 
of whether it was ever possible to develop an 
optimal plan.

By marking the distinction between 
planned strategy and strategy in action 
Mintzberg’s concept of emergent strategy 
highlighted the contextual complexity for 
strategic action. He proposed that actual 
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strategies emerge from the dynamics of 
interaction between the organization and its 
environment. This idea brought with it 
notions of organizational learning and evolu-
tion over time. In the organizational behav-
iour literature, there was a growing interest 
in the role of self-organizing groups and 
front-line inventiveness in enabling transfor-
mation and innovation whilst maintaining 
organizational integrity in dynamic competi-
tive contexts.

The rapid adoption of the Internet and 
related technological advances in the 1990s 
highlighted the networked nature of society 
and economics, characterized by increased 
informational complexity and scope for 
greater uncertainty and unpredictability 
associated with the consequences of manage-
ment action. The global inter-connectedness 
and network dynamics made it difficult to 
define the requisite system boundary and 
parameters of structural stability within the 
deterministic design paradigm (Merali and 
McKelvey, 2006).

These developments generated the interest 
of management scholars in the ‘new’ science 
of complex systems which enabled the 
formalization of ideas of adaptation, emer-
gence, self-organization and transformation.

Self-organization, emergence 
and adaptation

In systems thinking the idea of emergence 
was originally expressed in the context of 
systems as hierarchical, nested systems of 
systems – the philosopher C.D. Bond coined 
the term ‘emergent properties’ for properties 
that emerge at a certain level of complexity 
but do not exist at lower levels (Capra, 1996). 
Scientists in the second half of the twentieth 
century brought to the fore the importance of 
the open nature of systems and provided 
insights about the dynamics of emergence, 
inspiring management scholars to develop 
models of organizations as complex adaptive 
systems. Complex adaptive systems are 
systems that adapt and evolve in the process 

of interacting with dynamic environments. 
Adaptation at the macro level (the ‘whole’ 
system) is characterized by emergence and 
self-organization based on the local adaptive 
behaviour of the system’s constituents.

Three of the most influential develop-
ments in systems thinking about emergence 
and self-organization in open systems came 
from the physical and life sciences: 
Prigogine’s work on dissipative structures 
in chemical systems along with Eigen’s 
hypercycles and Haken’s articulation of 
Synergetics, Maturana and Varela’s concept 
of autopoiesis in living systems, and the 
articulation of evolutionary dynamics in arti-
ficial life and ecosystems. All of these high-
light that self-organization is not the result of 
a priori design, it surfaces from the interac-
tion of system and the environment and the 
local interactions between the system’s com-
ponents. This capacity for the spontaneous 
creation of order through intrinsically 
generated structures is captured in Stuart 
Kauffman’s (1993) expression ‘order for 
free’, in the notion of Prigogine’s dissipative 
structures (Prigogine, 1967), Haken’s 
Synergetics (Haken, 1973), Eigen’s hypercy-
cles (Eigen and Schuster, 1979) and in 
Maturana and Varela’s theory of autopoiesis 
(Maturana and Varela, 1973).

Dissipative structures, autocatalysis 
and synergetics
In the 1960s Ilya Prigogine and his col-
leagues demonstrated that energy input to 
an open system with many interacting 
components, operating far from equilibrium, 
can give rise to a higher level of order. 
Running a particular chemical reaction where 
nonlinear catalytic effects were present gave 
rise to the spontaneous formation of station-
ary or moving patterns of colour (‘dissipative 
structures’) that either maintained themselves 
in a stable state far from equilibrium, or 
evolved to produce new patterns.

Close to equilibrium the chemical kinetics 
can be described by the linear equations of 
classical thermodynamics, but as the chemi-
cal reaction is driven further from equilibrium 
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by pumping in reactants, the system reaches a 
critical point at which it ‘jumps’ spontane-
ously from homogeneity to a moving or sta-
tionary coloured pattern. Prigogine modelled 
this phenomenon using nonlinear chemical 
kinetic equations receiving matter and energy 
from the outside. In this explanation, changes 
in the internal structure (observed as insta-
bilities and the jump to the new structural 
form) are the result of local fluctuations in the 
densities of chemicals amplified by positive 
feedback loops. He called the emergent, 
ordered structures ‘dissipative structures’.

Also in the 1960s Herman Haken developed 
his science of Synergetics (Haken, 1973, 
1978), based on his work with lasers, demon-
strating the self-organization of an incoherent 
mixture of lightwaves of different frequencies 
and phases into a coherent laser light of one 
single monochromatic wavelength. The syner-
getic mechanism was taken up by Beer in his 
formulation of Syntegrity as a method for 
team-based problem solving (Beer, 1994).

In the 1970s Manfred Eigen speculated 
that the origins of life may lie in interacting 
autocatalytic cycles (hypercycles) that 
evolved by passing through instabilities and 
creating successively higher levels of organi-
zation characterized by increasing diversity 
of richness of components and structures for 
natural selection to act on.

Prigogine, Eigen and Haken’s discoveries 
of self-organizing systems are all character-
ized by:

n stable states that are far from equilibrium;
n development of amplification processes through 

positive feedback loops;
n the breakdown of stable states through instabili -

ties that lead to new forms of organization;
n continual flow of energy/matter through a 

system; and
n mathematical description in terms of nonlinear 

equations.

As Capra (1996) points out, in nonlinear 
thermodynamics the ‘runaway’ positive feed-
back loops that had always been regarded as 
destructive in cybernetics now appear as a 

source of new order and complexity in the 
theory of dissipative structures.

Dissipative structures demonstrated how 
self-organization and the emergence of struc-
tures (such as oscillating colours, spiral 
waves, etc.) at a completely different level to 
that of the molecules creating it, could occur 
spontaneously. The patterns were in the 
range of centimetres while the molecules that 
formed them were of the order of a hundred 
million times smaller. All that was required 
was a system of interacting elements (in this 
case molecules and atoms) that are open to 
flows of energy and matter. This gives us a 
science that includes history both in the 
organization and structure that has emerged, 
together with its relationship with the envi-
ronment: in the words of Prigogine and 
Stengers: ‘where classical science used to 
emphasize permanence, we now find change 
and evolution.’

The nonlinear equations that describe the 
system’s dynamics have a number of possible 
solutions, and the path that the system takes 
will depend on the system’s history and the 
prevailing environmental conditions at that 
precise moment. As the system is in a con-
stant state of flux, the combination of system 
state and environmental conditions is unique 
for each dissipative structure, and this means 
that over the longer term it is impossible to 
predict what the next system state will be.

It is this impossibility of prediction that 
distinguishes complex adaptive systems from 
chaotic systems. The term ‘chaos’ has been 
popularized in the managerial literature on 
dynamism, innovation and creativity, and is 
often used to refer to a state of disorder and 
randomness out of which arises a new order. 
However, technically a chaotic system is a 
deterministic system that has parts of its tra-
jectory that are not stable so that its future is 
very sensitive to its precise path and current 
state. In practice the degree of accuracy (of 
measurement of start conditions) needed in 
order to predict an outcome is likely to be 
impossible to obtain. Chaotic systems share 
properties with complex systems, including 
their sensitivity to initial conditions. However, 
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in the study of chaotic systems, the systems’ 
dynamics are generally described by a small 
number of variables interacting in a nonlinear 
fashion, whilst complex systems have many 
degrees of freedom.

The scientific study of open systems has 
led to the science of complexity – that is the 
science of evolutionary change, adaptation 
and self-transformation. It deals with sys-
tems that can undergo spontaneous, symme-
try breaking transformations corresponding 
to qualitative change with new emergent fea-
tures, capabilities and processes and do not 
simply grow or decline within a fixed set of 
dimensions. It is easy to see the appeal of 
such a science for those in search of systemic 
principles to explain the dynamics of socio-
economic systems: it has the potential to 
address the ideas of path dependency, crea-
tivity, disruptive change, unpredictability and 
self-determination that are characteristic of 
human activity systems.

This approach for open systems presented a 
major contrast to the equilibrium dynamics of 
traditional Newtonian physics, and brought to 
the fore the importance of system/environ-
ment interactions. For management scholars it 
suggested the possibility of a novel paradigm 
for the organization of complex social systems 
– one in which individuals did not have sight 
of the whole problem space, there was no 
central co-ordinator, and yet their local inter-
actions resulted in the emergence of a coher-
ent collective behaviour in the face of 
environmental perturbation. We shall see the 
impact of these ideas on current thinking 
about competition and the evolving competitive 
landscape in a later section.

Autopoiesis
Whilst the discovery of dissipative structures 
in the natural sciences provided the conceptual 
frame for understanding the dynamics of 
self-organization and transformation, the 
biological sciences provided a novel perspec-
tive on sustainability, life and the mainte-
nance of organizational integrity.

The cybernetic movement had already 
launched a stream of research on the devel-

opment of machine intelligence, and von 
Neumann’s work with cellular automata 
forms an important component of experi-
ments with artificial life to the present day. 
The von Neumann machine was a theoretical 
machine which, by following precisely 
detailed instructions, could fashion a copy of 
itself. The concept was then improved when 
Ulam suggested that the machine be built 
as a collection of cells on a grid. The idea 
intrigued von Neumann, who drew it up – 
creating the first of the devices later termed 
cellular automata.

Maturana and Varela’s theory of autopoi-
esis had its roots in the cybernetic world: 
they examined the mathematical models of 
self-organizing networks from cybernetics, 
and using cellular automata, they developed 
the model of self-producing organization that 
is at the heart of their theory. Maturana and 
Varela (1973) identified autopoiesis (self-
production) as the defining characteristic of 
all living systems. The term is sometimes 
used in a more general sense to refer to self-
organizing systems with nonequilibrium 
dynamics capable of maintaining stability 
over long periods of time.

According to their definition, the system is 
open to the flow of energy and materials, but 
maintains its integrity and identity by 
organizational closure:

Living systems [are] organised in a closed causal 
circular process that allows for a change in the way 
the circularity is maintained, but not for the loss of 
the circularity itself.

In keeping with the cybernetic tradition, their 
definition distinguishes between the organi-
zation (abstract description of pattern of rela-
tions) and structure (physical relationships 
between components, physical embodiment 
of its organization). They define the living 
system as a network of networks of (self-
producing) production processes, identifying 
three types of relations (relations of constitu-
tion, relations of specification and relations 
of order) that must obtain between compo-
nents in order to maintain the substance, 
form and integrity of the autopoietic unity 
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over time. The autopoietic unity is a self-
referential, self-regulating, self-producing, 
self-organizing entity capable of maintaining 
a stable state under nonequilibrium condi-
tions. The autopoietic ‘network of processes 
of production’ is realized by components 
interacting with each other through structural 
coupling and neighbourhood relations of 
variable strength. Perturbations in the envi-
ronment are sensed by boundary components 
and appropriate adjustments are propagated 
through the network. Individual components 
make adjustments relative to their local 
neighbourhood relations to maintain a stable 
global organization.

The mechanism of structural coupling 
allows the system to learn and to generate 
new behaviours in response to environmental 
changes whilst preserving its overall pattern 
of network relationships. The system inter-
acts with both its internal and external 
environment through structural coupling, 
responding to environmental changes with 
structural changes which will in turn alter 
future behaviour of the system as a whole.

In the management field, autopoiesis has 
provided an important conceptual framework 
for thinking about boundary phenomenology 
and the processes of self-organization that 
allow learning and creativity whilst main-
taining organizational integrity and identity 
in the face of environmental perturbations 
(Merali, 2002).

In sociology Niklas Luhmann developed 
the theory of autopoiesis to study social 
systems as networks of networks of 
communication:

Social systems use communication as their particu-
lar mode of autopoietic reproduction. Their ele-
ments are communications that are … produced 
and reproduced by a network of communications 
and that cannot exist outside of such a framework. 
(Luhmann, 1990)

The dynamics of the system is defined in 
terms of self-amplifying feedback loops, and 
network closure gives a shared system of 
beliefs, explanations and values – a context 
of meaning – which is continually sustained 

by further conversations. In Luhmann’s 
approach, communication acts include self-
production of roles and boundaries (of expec-
tation, confidentiality, loyalty, etc.), which 
are maintained and renegotiated by the 
autopoietic network of conversations.

The autopoietic construct illustrates the 
combination of path dependency and innova-
tion that have characterized the evolution of 
systems thinking: in it we can see clearly the 
connection between the cybernetic move-
ment of the Macy conferences, and the self-
organizing principles of complex systems 
science articulated by Prigogine, Eigen and 
Haken. Its impact on the field of manage-
ment has been largely at the conceptual 
level – as metaphor, model and, as in 
Luhmann and Merali, theory for making 
sense of the systemic properties of individual 
organized forms and their persistence.

In the next section we look at the ideas 
about the way in which other ideas from 
biology have contributed to our understand-
ing of more complex socio-economic sys-
tems involving multiple relationships 
between many individuals and organizations 
– we move from looking at the unity as an 
individual persistent, bounded entity to 
looking at populations of different entities 
and their co-evolution with the changing 
landscape.

Adaptation, evolution 
and co-evolution

In the second half of the twentieth century a 
number of models and theories developed to 
link diversity of individuals at the local micro 
level with population level effects at the macro 
level. Some of the main contributions to sys-
tems thinking in this vein came from models of 
evolutionary dynamics and the creation of 
artificial life with cellular automata.

Artificial life
Simulations deploying von Neumann’s 
cellular automata were instrumental in the 
development of ideas about the way in which 
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a collection of simple entities (later referred 
to as ‘agents’)4 could, by following very 
simple interaction rules, self-organize into 
complex structures. This type of modelling 
was used extensively in the 1960s and 1970s 
to develop ideas about the origins of life and 
the organization of biological systems at all 
scales, ranging from the genome and cellular 
organization through to organisms, ecologies 
and social systems.

Craig Reynolds work on the dynamics of 
flocking was amongst the first biological 
agent-based models that contained social 
characteristics (Reynolds, 1987). He tried to 
model the reality of lively biological agents, 
known as artificial life, a term coined by 
Christopher Langton in the 1980s. Models 
such as these (in which elaborate, stable 
flocking patterns emerge as individual agents 
follow three very simple rules for positioning 
themselves relative to their neighbours) 
inspired management scholars to look 
for simple rules that they could deploy to 
create a self-organizing, adaptive workforce. 
Experiments showing the spontaneous 
emergence of novel artificial life forms 
encouraged them to advocate the organiza-
tional forms that were on the ‘edge of chaos’, 
aligned with Kauffman’s speculation that:

Networks on the boundary between order and 
chaos may have the flexibility to adapt rapidly and 
successfully through the accumulation of useful 
variations. In such poised systems, most mutations 
have small consequences because of the systems’ 
homeostatic nature. A few mutations, however, 
cause larger cascades of change. Poised systems 
will therefore typically adapt to a changing envi-
ronment gradually, but if necessary they can 
change rapidly. (Kauffman, 1991)

Whilst many of the attempts to translate 
these ideas into management practice were 
overly simplistic, this strand of work 
succeeded in providing management scholars 
with models for conceptualizing the dynamics 
of self-organization.

Evolutionary dynamics: fitness landscapes
According to the classical theory of evolu-
tion, populations adapt to their environment 

under the pressures of selection. At the indi-
vidual level, biological fitness is determined 
by the genetic make-up of individuals, with 
those that have a good enough fit with the 
environment surviving to reproduce.

The classical top-down perspective of 
selection as the driver of evolution has been 
complemented by complex systems scholars 
using cellular automata to define mecha-
nisms for the generation of micro-level diver-
sity and defining the ‘fitness landscape’ or 
map of the relative value (for survival) of 
individual genetic endowments. The most 
common mechanisms for generation of diver-
sity are random mutation and recombination. 
The evolutionary process is defined as a 
search in the space of possible genotypes for 
points that map for a higher fitness. The best 
known of such models is Stu Kauffman’s 
NKC model in which the space of possible 
genotypes is defined by a network of N genes 
(with A possible variants (alleles)) with K 
interdependencies between them (determin-
ing the extent to which the potency of each 
gene is affected by its interacting others) and 
affected by C external interdependencies. 
As Maguire et al. (2006) explain:

biologists conceptualize the challenge facing species 
as a problem of combinatorial optimization – of 
navigating the landscape in search of higher peaks 
by sampling points in the space, ascertaining the 
associated fitness, and moving – then theorize 
about adaptation, competition and co-evolution 
using computational experiments. Agents thus, try 
to climb toward fitness peaks, but run the risk of 
getting trapped on suboptimal ones.

It is also important to realize that since a new 
behaviour can have emergent properties and 
features, in reality the ‘fitness landscape’ only 
exists where it is ‘populated’. The real fitness, and 
even the dimensions of performance may change 
when a new type is actually tried out.

Models of evolutionary dynamics have 
been deployed in management science as a 
mechanism for connecting the diversity and 
interactions of individuals at the local level 
with the overall system characteristics dis-
played at the macro-level for a number of 
different applications including the dynamics 
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of competition, the emergence of dominant 
designs, the impact of disruptive technologies 
and organizational adaptation.

Evolutionary drive
‘Evolutionary drive’ was put forward some 
years ago (Allen and McGlade, 1987) as the 
underlying mechanism that describes the 
change and transformation of complex sys-
tems. In this view evolution is driven by the 
interplay over time of processes that create 
micro-diversity at the elemental level of the 
system and the selection operated by the col-
lective dynamic that results from their inter-
action together with that of the system with 
its environment.

This co-evolution is seen as a continuous, 
on-going process and not one that has already 
‘run its course’, as in the case of ‘evolution-
ary stable strategies’ (Maynard-Smith, 1982). 
Because of the ignorance of individuals, and 
of the universe itself, as to the pay-offs that 
will occur over time for a given behaviour, 
there are always new aspects of micro-diver-
sity that can occur, so that co-evolution never 
reaches an ‘optimal’ outcome, as in the Game 
Theory approach. Instead, we see this multi-
level exploration and retention process as an 
on-going process that is occurring in real 
time, enabling the system to respond to cur-
rently undefined changes in the environment. 
History is still running. Each behavioural 
type is in interaction with others, and 
therefore evolutionary improvements may 
lead to greater synergy or conflict between 
behaviours, and in turn lead to a chain of 
responses without any obvious end. And if 
there is no end, then the most that can be said 
of the behaviour of any particular individual 
or population is that its continued existence 
proves only that it has been ‘good enough’ – 
but not that it is optimal.

In this review of the ideas that link com-
plexity to the management of organizations 
the guiding premise is that successful organi-
zations require underlying mechanisms that 
continuously create internal micro-diversity 

of ideas, practices, schemata and routines – 
not that they will all be taken up, but so that 
they may be discussed, possibly tried out and 
either retained or rejected. It is this that will 
drive an evolving, emergent system that 
is characterized by qualitative, structural 
change.

It firmly anchors success in the future on 
the tolerance of, and ultimately organizational 
understanding of, seemingly unnecessary per-
spectives, views, and ideas, since it is through 
the future implementation of some of these 
that survival will be achieved. In other words 
the organizational behaviour and the func-
tional types that comprise it now, have been 
created from the competitive and/or coopera-
tive interactions of the micro-diversity that 
occurred within them in the past.

Elements may be of the same type, but 
differ from each other in detail. Nobody may 
know whether these differences will make a 
difference as they are just random variations 
around a reasonable average. But, consider 
that there is in fact a ‘fitness’ landscape 
which actually reflects better and worse ‘fit’ 
of the diverse individuals to the environment. 
In biological evolution, the variation is 
caused mainly by genetic and epigenetic 
variations which lead to phenotypic hetero-
geneity for which the fitness landscape will 
provide differential survival and reproduc-
tion rates, thus defining and amplifying the 
‘fitter’, and suppressing the less fit. In this 
way, the existence of mechanisms that pro-
voke genetic and phenotypic variation will 
automatically produce the exploration of the 
fitness landscape.

In a competitive market it will be true that 
differential performance will be defined by 
customers and investors through the choices 
they make. Within organizations, however, 
evolutionary change will require that differ-
ent performances of different individuals, 
ideas, practices or routines be noticed, and 
that what works well is deliberately rein-
forced, and what works less well discour-
aged. This differential dynamics is really the 
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‘selection’ term of Darwin, operated by the 
environment, the customers and investors of 
the market place, or by the beliefs of the 
upper echelons of the organization. The 
organization chooses between different pos-
sible practices, routines, etc. and the market 
chooses between different possible products 
and services made by firms – and the only 
thing that is certain is that if there is no diver-
sity to choose between, then nothing can 
change.

Evolution can only occur if there is some-
thing that will generate heterogeneity sponta-
neously. And this is in fact the current 
ignorance about future outcomes and a lack 
of commonly agreed norms of how things 
should be done. This leaves managers with 
the challenge of deciding how much diversity 
to support within the organization for the sake 
of an unknowable future: the real options 
approach is designed to allow managers to 
invest in possible futures, but deciding what 
to invest in is still a challenge. The situation is 
further complicated by its dynamics and the 
coupling of the internal organization and the 
environment: the shape of the competitive 
landscape changes as individual organizations 
make their moves, and, depending on the 
dimensions of change, the fitness factors may 
also change. This brings to the fore the impor-
tance of time and timing, and of the informa-
tion flows between system and environment.

We can devise a simple computer program 
to demonstrate the dynamics of evolutionary 
drive, by considering a population that 
initially sits at a low point of a fitness 
landscape, and then has random variation of 
individual fitness. Different individual types 
will grow at different rates, thus defining 
‘fitness’ after the fact. Gradually the popula-
tion will ‘climb’ the local fitness landscape 
because of processes of ‘exploration’ in char-
acter space. Ignorance and consequent ran-
domness are very robust sources of such 
exploration. Clearly random changes in the 
design of any complicated entity will mean 
that tinkering experiments will lead to many 

non-viable individuals and hence that there is 
an ‘opportunity cost’ to behavioural explora-
tion. By considering two populations simul-
taneously at the foot of the fitness hill, where 
one population has a higher rate of random-
ness in character space than the other, we can 
compare the relative success of different 
rates of exploration. Initially, the ‘explorer’ 
population wins, because, despite its cost in 
nonviable individuals, diffusing and innovat-
ing faster is rewarded by the fitness slopes it 
discovers. Later, however, when the land-
scape has been explored and climbed, faster 
diffusion is no longer rewarded and the more 
conservative population with less exploration 
eventually dominates.

Evolution is thus driven by the noise to 
which it leads. Providing that microscopic 
diversity (noise) is produced in systems of 
interacting populations, the interaction 
dynamics will lead to the retention and 
amplification of some, and the suppression 
of others. This process will determine the 
‘ability to evolve’ as well as the particular 
types of micro-diversity contained in the 
populations at a given time. This situation 
reinforces the earlier epistemic theme of our 
limited knowledge of our own systems. 
There will never be a completely clear under-
standing of any evolving system at a given 
time, because it will always contain micro-
diverse elements that may or may not turn 
out to be successful. The understanding that 
we can have of reality is obtained by creating 
a ‘system’ of interacting entities that are 
sufficiently correct to describe the current 
situation, but inadequate to predict the future 
structural evolution that may occur.

However, understanding the nature of 
evolutionary dynamics enables us to specu-
late on the space of possibilities for the future 
by experimenting on how plausible models 
of current states may play out under a variety 
of future conditions.

For a social system, the irreducible uncer-
tainty of the open-ended co-evolution of 
things means that a messy, micro-diversity is 
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the only insurance against an unknown future, 
and that social evolution will proceed through 
successive periods of drift and diversification 
separated by shorter spans of selective elimi-
nation. Evolution and co-evolution only dem-
onstrate what is not viable at a particular 
time, and do not imply that what remains is 
an optimal structure that achieves anything in 
particular. Models can be built that capture 
the behaviour of multiple interacting indi-
viduals and the way in which their beliefs are 
confounded, reinforced or updated as they 
struggle to make sense of their changing cir-
cumstances. Complex systems models can 
therefore help us explore the consequences 
of different possible practices, values and 
beliefs, perhaps indicating some basic 
features that will underlie any functioning 
society.

Modelling complex social systems

Advances in mathematics of complex systems 
since Newton and Leibnitz’ differential calcu-
lus have become increasingly sophisticated, 
and significant developments include statisti-
cal mechanics, dynamical systems theory for 
dealing with nonlinearity, feedback and itera-
tions, and Poincare topology and fractal 
geometry for studying the qualitative features 
of complex systems. Whilst analytic methods 
have always been used for studying system 
dynamics, most nonlinear equations for 
complex systems are too difficult to solve 
analytically, and the advances in computing 
capacity have advanced the practice of solving 
by just running them numerically.

Cellular automata and agent-based sys-
tems are the most prevalent modelling 
approaches used for modelling complex 
social systems. One of the earliest social 
agent-based models (ABM) in concept was 
Thomas Schelling’s segregation model 
(Schelling, 1971). Though Schelling origi-
nally used coins and graph paper rather than 
computers, his models embodied the basic 
concept of ABMs as autonomous agents 

interacting in a shared environment with an 
observed aggregate, emergent outcome.

With the growing availability of comput-
ers ABMs could become much more ambi-
tious (an early example is Robert Axelrod’s 
model for competing strategies for the 
Prisoner’s Dilemma).

For social systems ABMs have been used 
to examine phenomena from the societal 
scale (e.g. ethnocentricism and dissemina-
tion of culture and the co-evolution of social 
networks and culture), issues as designing 
effective teams, understanding the communi-
cation required for organizational effective-
ness and the behaviour of social networks at 
the level of the individual organization 
(Axelrod, 1997; Carley, 2003). More recently, 
agent-based simulations have been based on 
models of human cognition, known as cogni-
tive social simulation (Sun, 2006). The 
exploitation of ABMs in the management 
field spans applications in the strategic, oper-
ational and organizational domains (Lomi 
and Larson, 2001; Maguire et al., 2006).

The diffusion of agent-based modelling 
has been accelerated by the availability of 
specialized modelling software (StarLogo in 
1990, SWARM and NetLogo in the mid-
1990s and RePast in 2000). A number of 
special interest groups and journals have been 
established focusing on the use of agent-
based modelling in the social sciences 
(reviewed in Bonabeau, 2002; Samuelson, 
2005; Samuelson and Macal, 2006).

Epstein and Axtell developed the first 
large-scale ABM, the Sugarscape, to simulate 
and explore the role of social phenomenon 
such as seasonal migrations, pollution, sexual 
reproduction, combat, and transmission of 
disease and even culture.

Learning multi-agent models
Agent-based modelling really become com-
plex systems modelling when the agents are 
open to new ideas (decision behaviours) and 
can learn over time. This effectively opens 
the system. Without this, the models them-
selves are still closed, mechanical systems.
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One of the direct uses of ABMs with 
learning agents is in the study of competitive 
dynamics. The competitive landscape of a 
given organization consists, among other 
things, of other organizations with similar 
objectives, and so there will be two criteria 
for fitness: (1) the ability to out compete 
similar organizations, or (2) the ability to 
discover other ‘niches’ which can still com-
mand resources, but which escape the 
competition.

In Darwinian thinking the micro-diversity 
of agents that occurs is considered to be 
‘random’ and independent of the selection 
processes that follow, while in human inno-
vation we like to think that there is intention-
ality, calculation and belief that may, a 
priori, ‘channel’ diversity into some narrower 
range.

The openness of an organization to its 
environment underlines the importance of 
the ‘fit’ between an organization and its envi-
ronment. The ‘fitness’ of any organization or 
structure is a measure of its ability to elicit, 
capture or merit resources from its environ-
ment and put them to use for self-perpetua-
tion. In order to maintain ‘fitness’ in a 
changing environment then, it will be neces-
sary for the organization to be capable of 
actively transforming itself over time, requir-
ing that agents change their internal 
knowledge, behavioural rules and perhaps 
connections.

Just having noisy agents, or signals with 
agents with fixed rules, which can be simply 
described by fixed stochastic equations 
corresponds to a mechanical model of social 
systems. Representing learning agents that 
can give rise to structural change and emer-
gent capabilities takes us from a mechanical 
model with fixed structure to evolutionary 
and co-evolutionary models which exhibit 
full complexity.

The dynamic perspective on competition 
shifts the emphasis from creating a set of 
maximally efficient operations that will pro-
duce some good or service for a particular 
market, to developing adaptive capacity in 

recognition of the reality of openness. 
Openness exposes the organization to 
change in supply and demand situations and 
the continual appearance of new ideas, tech-
nologies and competitors. This in turn 
demands changes in the organization itself, 
as it is presented with the need to learn and 
adapt, continually shifting its focus to track 
change. This discussion of organizational 
dynamics reinforces the replacement of 
maximal efficiency with ‘sufficient effi-
ciency’ combined with sufficient adaptabil-
ity, but emphasizes the significance of 
self-organized, organizational change in 
underwriting this process.

The problem of what constitutes the requi-
site level of efficiency and diversity to deal 
with the changing competitive landscape has 
no single definitive solution, but the use of 
agent based models allows us to explore the 
space of possible futures that may evolve 
from the (albeit limited) set of endowments 
and actions that we can conceivably attribute 
to our agents.

CONCLUSION

The evolution of systems thinking, starting 
from the ancients’ distinction between struc-
ture and form, has progressed as successive 
simplifying assumptions have been chal-
lenged and new dimensions have been 
introduced.

Associated with each stage of development 
are concepts that have influenced manage-
ment thinking along with powerful methods 
and models for adoption in management 
practice. In this chapter we have traced the 
path from approaches predicated on assump-
tions of structural stability to the present day 
engagement with complex systems science 
and the nonequilibrium dynamics of open 
systems.

One of the key transitions in the 
methodological perspectives between the two 
halves of the twenty-first century has been 
the shift from assuming structural stability to 
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questioning whether and when it is safe to 
assume structural stability. In the absence of 
structural stability the challenge shifts from 
being one of dealing with uncertainty to one 
of also dealing with unpredictability.

The science of complex systems has given 
us the conceptual and methodological equip-
ment to tackle issues of emergence, self-
organization, evolution and transformation, 
to elucidate the mechanisms by which micro-
level properties can give rise to macro-level 
behaviours, and to explain the generation of 
novel structures and behaviours over time.

The developments in evolutionary 
dynamics have challenged two other meth-
odological constructs that dominated systems 
thinking in the earlier era. The emphasis on 
open systems and the concept of co-evolution 
have entailed re-thinking the construct of the 
boundary and the separation of concerns 
between system and environment. The rec-
ognition of micro-diversity, outliers or ‘noise’ 
in the generation of alternative evolutionary 
pathways has challenged the use of average 
values to define variables, and this in turn has 
challenged the relevance of many of the sta-
tistical approaches for modelling the dynam-
ics of social systems.

Historically systems’ thinking has its roots 
in philosophy and the natural and biological 
sciences. The application of systems con-
cepts to social systems has been an important 
component of management science. The 
scientific understanding of the being and 
becoming of biological and physical systems 
has been variously deployed in the 
management field as metaphor, analogue and 
true description of social systems.

Some of the objections to using concepts 
from the natural sciences to explain human 
social systems have focused on the 
inadequacy of these concepts to deal with 
issues of free will, intentionality and purpo-
siveness. However, the recognition exists 
that there are collective phenomena and 
systemic properties that can be ascribed to 
human activity systems. Systems’ thinking 
gives us the possibility of choosing and 

using abstractions to make sense of the 
dynamics that underpin the behaviour of 
individuals and collectives. Complex sys-
tems thinking is attractive because it gives 
us the concepts that have been used to char-
acterize social behaviour in the human sci-
ences (e.g. emergence, adaptation, evolution, 
transformation, path-dependency, learning, 
diversity, serendipity), and allows the pos-
sibility of developing models that capture 
some of the richness and diversity of human 
existence. The complex systems modelling 
approa ches allow us to experiment with pos-
sible worlds in which consequences of our 
actions play out over time. In doing so we 
need to be aware of the dangers of bounded 
rationality and its influence on the choices 
that we make about the abstractions we 
deploy, and the assumptions we make about 
the data that we test these against.

Over time the focus of systems’ thinking 
has shifted from structure (reflected in the 
use of modularization to deal with complex-
ity), to organization or form (accentuated in 
the cybernetic approaches) to the network 
dynamics of adaptation and transformation 
(within the paradigm of complex systems 
science). Each of these ‘phases’ has given us 
concepts, tools and methods for understand-
ing and dealing with complexity in the world 
as we understand it.

For management science, systems’ think-
ing is a framework that includes these differ-
ent approaches and allows us to deal with the 
idea that the component parts of a system 
can best be understood in the context of 
relationships with each other and with other 
systems, rather than in isolation.

NOTES

1 Capra (1996) attributes the root meaning of the 
word ‘system’ with its holistic connotations to the 
Greek synhistanai (to place together).

2 For example, the Pythagorean distinction 
between matter and substance, and the Aristotelian 
distinction between matter and form.
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3 For example, Heralcitus’ observation that we 
cannot step in the same stream twice.

4 Whilst the origins of agent-based models 
go back to the von Neumann machine, it is prob-
able that the first use of the word agent is by 
John Holland and John H. Miller’s (1991) paper 
Artificial Adaptive Agents in Economic Theory which 
is based on an earlier conference presentation of 
theirs.
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